' AD=A092 22% WHITE SANDS MISSILE RANGE NM INSTRUMENTATION DIRECTORATE F/76 9/2
AUTOMATED READING OF VIDEOTAPE.(U)
NOV 80 R 6 MACHUCA
UNCLASSIFIED STEUS-ID-!O’Z

.

T
el =

[

||||| TR
- 1.8

fled

B2 s pe

MICROCOPY RESOLUTION TEST CHARI

M

‘.-, e e |
N [l @
Y]
| (A
) TECHNICAL REPORT
(o)
)
< STEWS — ID—-80-2 .
Q
<C
AUTOMATED READING OF VIDEOTAPE
CUF 93
g;@ ‘
NOVEMBER 980 . G :
FINAL REPORT ‘
‘E Approved for public release ; distribution uﬁllmlted

-.-

INSTRUMENTATION DIRECTORATE .
US ARMY WHITE SANDS MISSILE RANGE
WHITE SANDS MISSILE RANGE, NEW MEXICO 88002

80]1 24 008

8
8
§

Destroy this report when no longer needed. Do not return it to the 3]
originator, L

DISCLAIMER

The findings of this report are not to be construed as an official
gepartment of the Army position unless so designated by other authorized
ocuments.

Y CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE B O |

e v ———————————————teea—
2. GOVY ACCESSION NO.[RECIPIENT’S CATALOG NUMBER 1

v ADIAcCQ 2

UTOMATED READING OF VIDEOTAPE .

j ; JINCLASSIFIED 4

STEWS-1D-80-

. TYP F KT & PERIOD COVERED
I[s_vvee of agpo .

\Final gepert,

. PERFORMING ORG. REPORT NUMBER

7. _AyThHoRS——) ' % CONTRACT OR GRANT NUMBER(s) |
o (101 Raul G. /Machucﬂ- STEWS-ID-T, WSMR, NM

; ' tomfn?e“'l‘ﬂc ORGANIZATION NAME AND ADDRESS 10. ::ggnlAgOERLKE@TT‘NPURO ERCST. T:iK
US Army White Sands Missile Range DA OM 1511 —
ATIN: " STEWS-1D-T DA Project No.|1L161191A91A

T FF i
. CE NAME D ADDRESS 12 -
t1. CONTROLLING OFF) N AN // A /"]

13. NUMBER OF PAQES
69

T4. MONITORING AGENCY NAME & AODRESS(i{ different from Controlling Otfice) | 13. SECURITY CLASS. (of this report) 1

— | UNCLASSIFIED
——JWWW

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 4

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)
Image processing

Fourier Descriptors .]
Pattern Recognition

Video Tracking

20. ABSTRACT (Continue em reverse side if necossery and ldentity by block number)

-This report describes the concepts and software which are used in a proto-
type videotape reaper betng developed at WSMR, The goal is to read from one
frame of video the posttidn of the target and the three angular rotations of
the target. This fs done by first making a contour of the target from a
frame of video. The Fourier descriptors of the contour are then computed

and normalized.

DD , o5 1473 zoimow or 1 wov e8 13 ossoLE TR UNCLASSIFIED Vi ﬁ,fg QE
SECUMITY CLASSIFICATION OF Twis PAGE Deie

e

ACKNOWLEDGEMENTS

The author would 1ike to acknowledge those who helped with this report.
Ms. P, Smith assisted with the programming. Mr. J. Wise allowed us the
use of the laboratory, and Mr. C. Klaassen, as Systems Manager, was very
helpful in making the equipment available to us. Ms. H, Essary prepared
the final report, with help from Mr. M. Ramos in preparing the figures.

L}chssion For
NTIS GRAI

DTIC T4B (1
U"ann(‘unced ;

Justificatlon~____~_\

By . i

Distrzbutlon/

Avgilabili‘v Coées.‘

. ‘Avail ane/or
Dist | spoctal

A

Cn ek 4. i A Al R e R R M astviisndimg BB At

- N T - - . s -

TABLE OF CONTENTS

Page
INTRODUCTION ~=-veecccmcccmacmc e cccarcc e m e e e 1
SYSTEM DESCRIPTION ==-==m-=smeme-=ocmmcemccemmmmccccecc—mae o 1
STRUCTURE OF THE PREPROCESSING SOFTWARE =-=---=c=-meeommooamo- 9
CONSTRUCTION OF A CONTOUR FROM THE MOMENT FILE =---mm-=-mnne-- 16
FOURIER DESCRIPTOR METHODS --w-eeemcccm e e e - 42
Appendix A. FINDING EDGES IN NOISY SCENES -=--c-cccccmmcecoa- A-1
Section 1. Edges from Moments -----w-cccceccccmncnaaana. A-1
Section 2. Second Order Edges ~~-=---cocccmccmcanccaaaa- A-5
Section 3. Algorithms for Implementation -----c--cc-ceu- A-6

a. Calculation of Moment -----cccc-ccemcan A-6

b. Calculation of the Rotation ---<---c--- A-8

Section 4, Evaluation ----e-ccccmccmmmmcccccmccncceees A-9

& LIST OF ILLUSTRATIONS

Page
Figures la. Digitized video images of F102 --eeccecomencnae 3)
E 1b. Result of processing original with an
’ edge detector ----c-ccececccmccncccacncnannaa- 3
! lc. Contour of F102 -=-eccccmmcmrcmnancecrccnenana- 3
| 2. Line segments and associated segment numbers --- 4 :
L !
- 3. Library of contours of F102. This library was :
: generated from a computer made three- :
dimensional model ----m=mm-mememeeocmmeeeaee 5 !
4., Some contours found by the computer before
being corrected by the operator -------cc----- 6
5. Contours of Figure 4 after being processed
by the operator ---e-cecce-ceccecccnnconaccaan 7
6. The best match found by the computer -~-----e--- 8
7. Structure of the preprocessing software -------- 10
8. Generic hardware model for preprocessing
hardware ------caccmccmccccccccmccccccc e e 15
9a. F102 flying by a mountain ----v-cccceccmvccccann 17
9%. F102 flying in front of a mountain --~---c-con-- 17
9¢c. Hawk missile ---=cecmcaccmcamccccmcacrcaccaaa 17
9d. F102, sunspots on wings and nose ----=---ac-aa. 17
10a. Moment file of F102 flying by a mountain ------ 18
10b. Moment file of F102 flying in front
of a mountain -----ccecmccoccccncc e eccneas 18
10c. Moment file of Hawk missile ----ecocaccccacaa-. 18
10d. Moment file of F102, sunspots on wings
: and Nose ===----cmceeeccacccmcc e ceooeen 18
3 11. Raw histogram Data (I) from moment file.
; Integrated Data (II) from raw histograms ---- 19
12a. Contour found from Moment file (Fig. 10a) ----- 20
‘ 12b. Contour found from Moment file (Fig. 10b) ----- 20
12c. Contour found from Moment file (Fig. 10¢c) ----~- 20
12d. Contour found from Moment file (Fig. 10d) ----- 20
13. Two-dimensional number patterns and their
assigned geometrical directions --cecemeceaa. 24

vi

LIST OF ILLUSTRATIONS (cont)
Figure 14,

15.

16.

17.
18.
19.

20.

21.

22.

23.

A-1.
A-2.

A-4.
A-5.
A-6.
A-7.
A-8.
A-9.
A-10.

Examples of geometric relations for various
predicates, the geometric situation when
(a) P = true, and (b) Q = true ------c-a---
Data structures (a), éb) and operations with
their corresponding (c), (d) geometric
structures and geometric operations ---------

Geometric criteria for the continuation of
a polygonal segment ------ccccccmcmccmcccanan

Polygon before closing by distance measure ----
Polygon after closing by distance measure -----

Polygons and corrections entered by the
0perator -----c--ecececmcmmccccenccecmaacae-

New polygons obtained from corrected poly-
gons of Figure 19 =-e-cmcccamcccaccracnncaaa-

Three different contours of an F102 from
video taken at WSMR e-wvcecncecwcmecmacccana--

Three basic geometrical shapes and their
Fourier coefficients -------cc-ecccmncacecun-

Contours generated by functions of the

type Z ?t) = exp(1t) + /L exp(iLt) ~--------
Example center of mass vectors =------eeee---a-
Rocket and results of processing --------------

A curve T and its corresponding vector

field ®(t) —-m--mmemmmcammm e cccmecemeaeee '

Vector Field at a step or ramp edge point ----
Vector field at a roof edge point ----eccccea--
Original of roof edge and edge points =----=---
Clear edges and edges with noise added --------
Roof edges with corresponding ROC curves ------
Comparison of Sobel and Moment operator -------

Signal to noise ratio vs. index of
detectability ==accamcccecaccanaccaa P

vii

- O Y

Page

27

34

36
37
38

43

A-13

s

I R ot

" por

TR T T RN TR
-

INTRODUCTION

This report contains a description of an experimental videotape reading sys-
tem developed at the White Sands Missile Range Instrumentation Directorate
computer lab for the investigation of image processing and pattern recogni-
tion concepts. The VRS is presently being used tc study the concept of accur-
ately determining the aspect angles of a target from one frame of video. The
ability of accurately finding the position of a target from one frame of video
is useful in extracting a data product from a videotape when there is tape
available from only one station. Such a system, made into a real-time hard-
ware machine, would also have applications in fire control of high-energy lasers,
since the aiming of such devices requires that exact knowledge about the posi-
tion of the target be available so that energy can be deposited at a critical
point of the target. This experimental system is useful as a test bed for con-
cepts that will have applications both in extracting a data product to be used
by customers of WSMR and as a model for a hardware machine that would be used
both for real-time tracking and for fire control of new weapons technology.

SYSTEM DESCRIPTION

The data flow of this system js as follows:
* A video tape of a mission is taken at a station.

* The frames to be read are put on a video disk which is attached to
an image analyzing system capable of digitizing the frames in the video disc.

* These frames are digitized and put into data files with another
file containing all the file names of the frames which are of interest.

The software then processes the data in the following sequence:
1. Read in file containing names of files to be processed.

2. Read in first file and do preprocessing on it until completely done.

begin
repeat
cobegin
begin

3a. Read next file and do preprocessing on it.
end;
begin

3b. Make a contour of the previously processed file and do the classi-
fication.

end;
end;
until eof;

4. Finish off classifying last one read in

VM.-..——_>‘W...._-,» e e e e s e S oo 2

Processing begins by first doing pixel level operations. The classifica-
tion is done by making.a line drawing of the plane or rocket to be analyzed,

‘ and comparing it against a previously stored line drawing 1ibrary made from

! views of the object in question at different angles. Before a contour of
the target (Fig. la) can be made, points which are possible candidates for
edge points must be identified. Since, typically, scenes that we process
are very noisy, we begin by doing a three-by-three averaging to every point
in the scene. After this, a moment edge detector is used to assign to each
point in a scene a value which reflects the probability that a point is an
edge point (Fig. 1b). A threshold is chosen by the operator and all points
classified as possible target points are assigned a zero and all others a

, one. The computer then makes and displays a contour of the entire scene

5 ’ with different polygonal segments being assigned different values (Fig. 2).

The operator chooses the number of segments which make up the target, and

| ’ the computer writes the segments out in a file. This file is then modified 3

j by the use of interactive graphics programs (Figs. 4 and 5). The result ‘

&, (Fig. 1c) is compared against the library of stored views (Fig. 3), the

3 best match is found (Fig. 6) and the angular data needed is read from the
coordinate system. A description of the operations that take place is thus:

begin
1. Read in file containing names of files to be processed. L
2. Read in first file and do preprocessing on it until completely done. :

repeat
cobegin
begin)
3A. Read next file and do preprocessing on it.

end;
begin
3B. Make a contour by the following process:

a. Using a histogram, computer chooses a threshold for the
moment file of the original and displays a contour based on this threshold.

b.- Is this contour acceptable?

c. while contour not acceptable do
- begin
*Obtain new threshold from operator,

*Drav contour
*1s contour acceptable?

end
d. Let operator choose segments that will be used to construct

target.

e. Display segments chosen by the operator and modify them as the
operator instructs.

i f. Calculate the Fourier descriptors, normalize and do classifi-
cation,

end;
until eof;

4, Finish off classifying last one read in

end,

Db A, L

Figure la. Digitized video image of F102. Figure 1b. Result of processing original

Figure 1¢. Contour of F102.

with an edge detector.

Figure 2. Line segments and associated segment numbers,

i\ *FE' 192 pﬁ’ -
Aag i

-1.57 -1.26 -940 -.630 -.310 o .310 .630 .940 1.26 1.57

Flaure 3,

Library of contours of F102. This library was ccnerated from a

comrutar made three=dinensicnal medel,

Figure 4. Some contours found by the computer before being corrected
by the operator,

Figure 5. Contours of Figure 4 after being processed by the operator.

Figure 6; The best match found by the computer,

STRUCTURE OF THE PREPROCESSING SOFTWARE

Before a contour of the scene can be made, points which are possible candi-
dates for edge points must be identified. Since, typically, the scenes that
we process are very noisy we begin by doing a three-by-three, averaging to
every point in the scene. After this a moment edge detector is used to
assign to each point in a scene, a value which reflects the probability that
a2 point is an edge point. As shown in Appendix A this sequence of steps
increases the probability of detecting edne points. The next step is to

do another averaging operation on the moment file with the purpose of in-
creasing the connectedness of the edge points.

The software to accomplish the preprocessing was written with two ends in
mind; one was that this software would be a model for a hardware module to

be built later, and the other was that execution time be reduced by overlap-
ping input/output with processing. Fiqure 7 illustrates how the software is
set up. The programs READ 1, WRITE 1 and PROCESS are passive proarams in
that they suspend themselves immediately after doing some initialization oper-
ations. These consist of bookkeeping operations such as setting input file
name, output file name, and setting up parameters so that the proper buffer
is accessed each time a program is activated. The program which drives these
passive programs is called MaIN 1. It runs the needed programs and synchro-
nizes them via the use of alobal event flags. After the preprocessing is
finished it initiates the next step in processing by its call to ARROwWs.

A typical frame is processed by maIn 1 in the following way: First the pro-
grams READl, WRITEl and PROCESS are loaded into memory. They do whatever
initialization is necessary and then suspend themselves. There are two in-
put buffers that will be used by reapl to store the data to be processed,

and two output buffers where processed data is put and from where the program
WRITELl writes the data out onto the disk. mainl first has the two input buf-
fers (lines 15 - 18) filled by the two activations of reapl done by two calls
t0 RESUME (READ1). READ1 automatically processes the buffers in an alternate
manner as do PROCES and WRITEl. The buffers are initially set up (lines 21 -
24) so that the remaining processing can be done concurrently (lines 25 - 35).
In the do loop there are waits for flags to be set that indicate that each of
the programs involved are finished. The rest of mMaiNl finishes up with the
buffers that need to be processed and written out. On line 45 it starts the
next step for this frame by its call to armrows.

0015 CALL RESUME(READ1) ! FILL IN BUFFER #2

0016 CALL WAITFR(36)

0017 CALL CLREF (36)

0018 CALL RESUME (READI)

0019 CALL WAITFR(36)

0020 CALL CLREF(36) ! BUFFERS #1 and #2 FULL
c

0021 CALL RESUME (PROCEL,)

0022 CALL WAITFR(37)

0023 CALL CLREF (37)
c AT THIS POINT INBUF#1 AND INBUF#2 ARE FILLED
o) AND #2 HAS BEEN COPIED OVER TO OUTBUF #2
c

0024 CALL WAITFR(42)

9

MAIN1

1

PROCESS

WRITE1

I | \

Fioure 7. Structure of the renprocessing software.

1"

0025
0026
0027
0028
00«9
003::
0031
0032
2033
0 34
2035
NN36
JC37
3038
J039
0040
0041
0042
0043
0044
0045

READI has access to a common global area (line 8) where it reads in the
data to be processed. After initializing (lines 19 - 20) it suspends it-
self until activated. When activated it places the last six rows it has 1
read in the first six positions of the buffer (lines 25 - 27) to be pro-
It then reads 32 rows and stores the last six into sTore. The
bookeepina for the change of buffers is done (lines 32 - 34). MAIN1 is
signalled that reapl is finished by the call to seTer and there is a jump
to 21 which suspends READL.

cessed.

Juol
O00<
€303
2004
005
9106
Qon7
0003
0009
2010
2011

3019
0020
0021

0022
0023
0024
0025
0026
0027

30

20

15

DO 30 l=1,2
CALL RESUME (READ])
CALL RESUME (WRITEL)
CALL RESUME (i ROCE1)
CALL WAITFR(J38) 3
ALL WAITFR(37)
CALL WAITFR(36) 1
CALL CLREF (38)
CALL CLREF (37)

CALL CLREF (36) f
CONT INUE

CALL RESUME (WRITEL)

CALL RLSUME (PROCEL) :

CALL WAITFR({3o)
CALL W, ITFR(37)
CALL CLREF (3%)

CALL CIREF 137)

CALL SETEF (40)

CALL RESUME(WRITEl)
CALL WAITFR(38)
CALL REQUES (ARROWS)

I'ROLRAM READ]

INTEGER®2 SWITCH,POINT,WAKEUP,FINISH,QOFFSET
INTEGER"2 STORE(-383:0)

INTEGER*2 INTIN(-383:2048,2),INTOUT(-383:2048,2)
LOGICAL*1l INBUFF(128,-5:32,2) . INPUT BUFFER
LOGICAL*]1 OUBRUFY (128,-5:32,2) | OUTPUT BUFFER
LOGICAL*]1 BlO(25)

CoM:10:. /DTA/INBUFF ,OUBUFF

EQUIVALENCE (INTIN(-383,1),INBUFF(1l,-5,1))
EQUIVALENCE (OUBUFF(1,-5,1),INTOUT(-373,1))
DATA WAKEUI',FINISH/33,36/

POINT=1
SWITCH=2
CALL CLREF (4u)

CALL SETEF (41)

CALL SUSPND

READ (10'POINT) (INTIN(J,SWITCH) ,J=1,2048)
DO 15 I=-383,0

INTIN(I,SWITCH)= STORE(I)

CONTINUE

1

0028 DO 16 1=-383,0

0029 STORE (I)= INTIN(2048+I,SWITCH)
0030 16 CONTINUE

0031 30 CONTINUE

0032 INTER=SWITCH

0033 IF (INTER.EQ,1) SWITCH=2

0034 IF (INTER.EQ.2) SWITCH=1

0035 IF (POINT,EQ.5) GOTO 40

0036 CALL SETEF (FINISH)

0037 GOTO 20 ! GO WAIT TILL AWOKEN
0038 40 CALL SETEF (39)

0039 CALL SETEF (FINISH)

0040 END

The next step after the files have been read is to do the averaging and
edge detection. Again pPROCEs has access to the global common area DTA.
It initializes itself and then suspends itself and waits for MaINl to
activate it when needed. The processing (1ines 13, 14, 15) consists of
an averaging operation, an edge detection (MOMENT) and another averaging.
The processing is done from INBUF to ouTBUF (AVG), OUTBUF tO INBUF (MO-
MENT) , and then INBUF to ouTBurF. The bookkeeping to allow alternate buf-
fers to be processed is then done; the program suspends itself and then
waits for the next call.

0001 PROGRAM PROCESS
0002 INTEGER*2 SWITCH,POINT,WAKEUP,AVERAG,FINAVG
0003 REAL*4 M1,M2,MX,MY
0004 LOGICAL*1 INBUF(128,-5:32,2) ! INPUT BUFFERS
0005 LOGICAL*l OUTBUF (128,-5:32,2) ! OUTPUT BUFFERS
0006 COMMON /DTA/ INBUF,OUTBUF
0007 DATA WAKEUP ,FINAVG/34,37/
0008 SWITCH = 2
0009 KOUNT=0
0010 CALL CLREF (WAKEUP)
0011 20 CALL SUSPND
0012 KOUNT=KOUNT+1
0013 CALL AVERAG (SWITCH, 31)
0014 CALL MOMENT (SWITCH,29)
0015 CALL AVERAG (SWITCH,27)
0016 CALL SETEF (FINAUG)
0017 INTER=SWITCH
0018 IF (INTER.EQ.1l) SWITCH=2
0019 IF (INTER.EQ.2) SWITCH=1
0020 1F (KOUNT.EQ,4) GOTO 21
0021 GOTO 20
0022 21 CONTINUE
0023 END
12

o o e e Al et i © e

: - ~ - miie
) o P ———— - P
l
, 0001 SURROUTINE AVERAG (SWITCH,L)
: 0002 LOGICAL*l INBUF(128,-5:32,2),0UTBUF(128,-5:32,2)
‘ 0003 INTEGER*2 R1,R2,R3
0004 INTEGER*2 SWITCH,L
0005 COMMON /DTA/ INBUF,OUTBUF
0006 DO 10 J=-4,L
0007 D 20 I=1,127
0008 R1=R2
0009 R2=R3
0010 I0 = INBUF(I+l,J-1,SWITCH).AND 255
- 0011 11 = INBUF(I+1,J,SWITCH).AND.255
f 0012 I2 = INBUF (I+1,J+1 SWITCH).AND.255
| 0013 R3 = (I0+I1+12)/3
0014 IAVG= (RI+R2+R3)/3
. 0015 OUTBUF (I,J~1,SWITCH)=IAVG.AND, 255
M 0016 20 CONTINUE
0017 10 CONTINUE
0018 RETURN
0019 END
0001 SUBROUTINE MOMENT (SWITCH,L)
0002 LOGICAL*1 INBUF (128,-5:32,2),0UTBUF(128,-5:32,2)
0003 INTEGER*2 SWITCH
0004 COMMON /DTA/ INBUF,OUTBUF
0005 DO 30 J=-4,L
0006 DO 40 1=2,127
0007 I0=1I3
0008 11=14
0009 I12=15
0010 13=16
0011 14=17
0012 15=18
0013 I6=OUTBUF (I+1,J-1,SWITCH) .AND, 255
0014 17=OUTBUF (I+1,J,SWITCH) .AND, 255
0015 I8=0UTBUF (I+1,J+1,SWITCH) .AND. 255
0016 XM=FLOAT (5% (I0-18) +4* (I1+I3-I5-17))
0017 YM=FLOAT (5% (16-12)+4% (I3+417-11-15))
0018 M=SQRT (XM¥*2+YM**2)]
0019 INBUF (I,J-1, SWITCH)=M.AND. 255
0020 40 CONTINUE
0021 30 CONTINUE
0022 RETURN
0023 END
The average that is done 1s an unweighted average. The edge detector used
is a moment operator which has been shown to perform well in the presence
of noise. The next program that is called is wriTel. The data structure
here are the same as those used for READ1 with the same global common area
being used. It also suspends itself and waits to be activated,

13

0001 PROGRAM WRITEl
0002 INTEGER*2 SWITCH,POINT,WKEUP,FINWRI ,OFFSET ;
0003 INTEGER*2 INTOUT (~383:2048,2) '
0004 LOGICAL*l INBUF(128,-5:32,2) ! INPUT BUFFERS
0005 LOGICAL*1 OUTBUF (128 -5:32,2) . OUTPUT BUFFERS
J006 LOGICAL*1 B10(25), CHARAC
0007 COMMON /DTA/INBUF ,OUTBUF
0008 EQUIVALENCE (INTOUT(-383,1),0UTBUF(1,-5,1))
0009 DATA WAKEUP, FINWRI/35,38/ :
0018 POINT=]1
0019 SWITCH=2
c

: 0020 CALL CLREF (WAKEUP)
0021 CALL SETEF (42)
0022 20 CALL SUSPND
0023 WRITE (11'POINT) (INTOUT(J,SWITCH, ,J=-383,1664)
0024 30 CONTINUE

C
0025 INTER=SWITCH
0026 IF (INTER.EQ.1) SWITCH=2
0027 IF (INTER.EQ.2) SWITCH=1
! 0028 CALL READEF (40,LCODE)

0029 IF (LCODE.EG.2) GOTO 46
0030 CALL SETEF (FINWRI)
0031 GOTO 20
0032 46 CONTINUE 1
0033 INBUF (1,-5,1) = CHARAC
0034 DO 47 I=1,25
00358 INBUF (I+1,-5,1)= B1O(I)
0036 47 CONTINUE
0037 CALL SETEF (FINWRI)
0038 END

A model for a hardware realization of this software {s given in Figure 8.
Here each of the circles would be a cpu together with some local memory.

They would be passive and controlled by a cpu,MAIN. The squares would

1 correspond to buffers accessed by cru's as indicated. There are standard
hardware methods, such as interrupts and flags, that can be used for the

synchronization which is done in the software model.

14

e 1

% 2

"2

BUFFER
\\ ACCESSED
TV BY HIGHER
LEVEL
PROCESSORS
AN
MAINI
READ!
WRITE!
AVG MOMENT
ﬂ N AN S
: s BLA
Y
Fioure 8. Generic hardware model for :reprocessing hardvare.

15

T

CONSTRUCTION OF A CONTOUR FROM THE MOMENT FILE

After the moment file 21c is created a threshold "T" must first be found
such that a contour of the target will be included in the set.

{ PIC(i,3): i=l..n,J=1..N,PIC(i,j) < T }

To find T we first compute the histogram of the moment file created. A
number p needs to have been chosen beforehand which represents the percentage
of the scene points which are target points. The first point for which

f255 histo > P

is found and used as the value of T. It has been found that p= 15. works
well in cases where the target is a small part of the scene and p= 25. does
well when the target is a large percentage of the scene. In Figure 9 there
are four originals that will be reduced to a contour. The result of pre-
processing this data is in Figure 10. The problem now is to find a T such
that the target will be separated from the background. If we look at the
raw histograms (Figure 11I) we can, in some cases, guess at where the thresh-
old should be chosen, assuming that there is one distribution for the tar-get
and another for the background. The background distribution is centered
about the maximum of the histogram while the target distribution is part of
the tail of the histogram. Thus it is reasonable to suppose that the target
points constitute a certain percentage of the points to the right of some
value, Experiments have shown that the proper value for this percentage is
between 15 and 25, depending on the size of the target. Figure 11b is a
figure found from 11a by graphing

255
Sumi(x) =f X hlstoi

for each histogram of 11(I). From this graph we see that, as the contrast
decreases, the threshold to be chosen decreases, a procedure -that agrees with
our intuition. We can also see that, when the target size is large, the

graph is radically different than when the target is small. Using 11(II)

and p = 23, we obtain the contours of Figure 12. The computer is set to
threshold at p = 23, the contour appears on the screen; and the operator can
reject this contour and request a new one based on an operator supplied value
for . One choice of » does not always produce closed contours of the target;
and this is why operator intervention fs required at this point. As this
system stands now, P is set by the operator on the initial frame and used for
subsequent frames until the operator intervenes.

16

b ik

Figure 9a, F102 flying by a mountain, Figure 9b., F102 flyina
mountain.,

nose.

17

A~y

Figure 9c. Hawk missile Figure 9d. F102, sunspots on wings and

Figure 1Cb. lement file of F102 flying
in front of a mauntain.

Figure 10d, Moment file of F102, sun-
spots on wings and nose.

T

> 4

4 1 il

LA Liiil

0.18
Data (I}

10 T T T
LI | 4 LR T L | BN 3
.0 R 0.10 018 (W W (R)
ata (II)
Figure 11. Raw histogram Data (I) from moment file. Integrated Data (II) from

raw histograms.

19

Figure 12a., Contour found from Mo-
ment file (Fig. 10a.)

w 4

DV 9 oo

@
; Cﬁ,
N, “eacsb 76

Figure 12c. Contour Found from Mo~
ment file (Fig. 10c).

Figure 12b,

Figure 12d.

Contour found from Moment
file (Fig., i0b).

Contour found from Moment
file (Fig. 10d).

- et et B i M A aiaims & N B sy

v v TR

Once the value of T has been determined so that the target lies in the set
{PIC(i,j):i=1l...n,j=1..m , PIC(i,3j)<T }

We are in a position to begin making the contours from which the targets

will be extracted. Again since these programs are intended to be used as
models for a future hardware implementation the processing follows a sequen-
tial order. That is, the rows are processed from 1 to n with the original
gray values used just once in the processing. It is commonly known that to
construct a fast contour plotting algorithm the Freeman code must be dropped
as soon as possible. We use the Freeman code to record the direction as we
go along but convert to a polygonal representation as soon as it is possible,
as when there occur two consecutive Freeman codes with the same direction.
This is the first step in the contour-forming process and results in a set of
line segments which are specified by their endpoints. The next step is join-
ing the elements into contours.

The program that performs the operations described above is the program arrow.
First of all, six rows to be processed are read into ammoun(128,6). One pair
of rows is processed at a time with the results of the processing being put
into sTOR(128,2) (lines 52 ~ 63). The assignment of directions begins by --
first, threshoiding two rows of ammoun, with a point being assigned a zero if
the average of a two-by-two neighborhood is greater than t and a one if it is
less than t (lines 59 - 61). Beforehand sTor(128,1) is first overwritten by
the last row processed which had been put in sTOR(128,2) (lines 65 - 66).

0001 PROGRAM ARROW

0002 INTEGER*2 MAG (384) ,ANG(384) ,CENTER, THRSHM, X
0003 INTEGER*2 U,V,POINT3,A0,Al,A2,A3

0004 INTEGER*2 POINT1,POINT2,VAR,SUM,SIGN

0005 INTEGER*2 hO,H1,H2,H3,STOR(128,2),AVERAG, THRESH
0006 LOGICAL*1l Y,ANS,INV,FLAG

0007 LOGICAL*1 AMMOUN (128,6),ANGLE (128,6) ,NEW(128,5)
0008 LOGICAL*1 B10(25) ,NAMETE (26)

0009 REAL*4 X1,SEGMN

0010 INTEGER*2 LINES (500,3)COORDI (1500,6)

0011 INTEGER*2 POINSI

0012 INTEGER*2 POINTL,POINTH,POINTT,COL

0013 COMMON INV,FLAG,SIGN

0014 COMMON LINES,POINTL,POINTH,POINTT,COL, I28
0015 COMMON /DTA/COORDI

0016 EQUIVALENCE (MAG,AMMOUN)

0017 EQUIVALENCE (NAMETE ,COORDI)

0018 EQUIVALENCE (ANG,ANGLE)

0019 DATA Y/89/

0020 DATA SEGMN/6RSEGMEN/

0021 DATA 1J/0/

0022 DATA AK/1.4111764/

0023 CALL ERRSET(37,.TRUE.,.FALSE., .FALSE., .FALSE.,31)
0024 I=NAMETE (1)

0025 DO 999 M=1,25

0026 B10 (M) = NAMETE (M+1)

21

———

0027
0028
0129
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
004~
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

0060

0061
0062
0N63
0064
0065
0066
0067
006"
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080

999

947

338

140
77

746
10
700

150
339
341

991

CONTINUE

CALL ASSIGN(7,Bl0,I)

DO 947 L=1,20

COORDI (L,1)=0
COORDI(L,2)=0
COORDI(L,3)=0
COORDI(L,4)=0
COORDI (L, 5)=0

COORDI (L,6)=0

CONTINUE

POINSI=1

DEFINE FILE 7(0,64,U,POINT2)
POINT2=1

CALL DEVIAT (THRESH,POINT2)
POINT2=1

13=0

POINTT=1

POINTL=0

POINTH=1

CONTINUE

DO 150 K000=1,25

DO 140 KO=0,5

READ (7'POINT2,END=77) (MAG(I), I=1+KO*64,64+KO*64)
CONTINUE

CONTINUE

DO 10 J=1,5

DO 5 I=1,127

H2=HO

H3=H1

LCONS=I+1
HO=AMMOUN (LCONS ,J) .AND.255
H1=AMMOUN (LCONS, J+1) .AND. 255
*VERAG= (HO+H1+H2+H3) /4
STOR(I,2)=0

IF (AVERAG.LT.THRESH) STOR(I,2)=1
CONTINUE

CONTINUE

CALL OUT(STOR,J+IJ)

DO 756 IND=1,128

STOR (IND,1)=STOR(IND, 2)
CONTINUE

CONTINUE

CONTINUE

POINT2=POINT2-1

IJ=1J+5

CONT INUE

FORMAT (32X,15(X,14),/)
CO:'TINUE

CALL CLOSE(7)

COORDI (1,6)=POINTH

CALL CHANGE

CALL REQUES (SEGMN)
CONTINUE

END

22

.

st |

o

-l

When the Subroutine outr is called it uses STORE to generate Freeman-Code
directions for a row and three such rows are stored in the array NUMBER(128,3).

To obtain a Freeman-Code, the patterns of Figure 13 are assigned the indicated
values by the subroutine ouT and stored in NUMBER(128,3). All other patterns
are assigned a -1.

0001 SUBROUTINE OUT(STORE,J)

0002 INTEGER*2 STORE(128,2),NUMBER(128,3)
0003 RERL*4 ANGLES(15)

0004 REAL*4 THETA

0005 LOGICAL*1l FLAG1,FLAG2,FLAG

0006 DATA ANGLES/-1.,7.,6.,3.,4.,-1.,5.,1.,-1.,0.,-1.,2.,3*-1./
0007 DATA FLAG/.FALSE./

0008 IF(J.GT.3)CALL LOGIC (NUMBER,J)

0009 CALL READEF (15,LCODE)

0010 IF (LCODE.EQ.2) RETURN

0011 DO 10 I=1,127

0012 NUMBER(I,1l)=NUMBER(I, 2)

0013 NUMBER(I,2)=NUMBER(I,3)

0014 10 CONTINUE

0015 DO 20 I=1,127

0016 INDEX=STORE (I,1)*2**34+STORE(I,2)*2**2+STORE (I+1,1)*2+ STORE(I+1,2)
0017 IF (INDEX,.EQ.O) INDEX=15

00ls8 NUMBER (I, 3)=I1INT (ANGLES (INDEX))

0019 20 CONTINUE

0020 RETURN

0021 END

The next step is the linking of directions which are the same, and appear
sequentially in a three-by-three window. Two predicates are used in control-
ling the statements to be executed. These are

p = The element of NUMBER is a continuation of a segment of the same
direction.

o = The element of NUMBER being checked is continued by a segment of
the same direction.

The cases where pP=.true. and o=.true. are illustrated in Figures 14a, b.
- The possible predicates and the actions taken when the predicates are true
7 are shown in Fiqure 14c.

a. PAQ
Put the segment number of the line that the element of NUMBER
continues into first 15 bits of nUMBER(i,2). This segement number is extracted
from the first 15 bits that NUMBER(i,2) continues.

Saasibe s

b. PAQ
In this case a new segment needs to be started. The starting row
] and columns are stored in the array LINES. POINTL contains the current

3 1
1,1 |141,0
STOR 4 +>0
1,2 [141,2
5 7
o o o o 0 t o
1 2 3
o o o o o 1 °
{ ' 0 1 o] 1 o O

- /s 1 N |

Firure 13.
24

Two-dimensfonal number ~attarns and their assioned geometrical directions. ' E
f

segment number and LINES(POINTL,1l) sets the row number, LINES(POINT1,2)
the column number and LINES (POINTL,3) the direction.

c. pand ¢

This happens when a 1ine segment of the same direction is termin-
ated. The action taken in this case is to store the beginning coordinates
ending coordinates, and direction of the line segment in coorpi. The beginning
point of the segment is obtained by first stripping the first 15 bits off
NUMBER(i,2) and accessing the entry of LINEs which corresponds to this
number. This gives the starting point of the segment, while the final point
is gotten from the current row and column coordinates. 4

d. pand o
It is an isolated direction and thus it is stored directly
into COORDI.

Subroutines rLocic and cuarps look at the direction numbers in NUMBER and
link those arrows that occur sequentially in the same direction. The
arrays used to do the bookeeping at this stage are LINES(,) and COORDI(,)
with the final results being stored in coorbi(,). Long polygonal segments
are constructed by tracking along consistent joins of these 1ine segments
at each point, checking for possible continuation of each segment.

The subroutine rLogic drives the programs which produce the pseudo Freeman
code and do the bookeeping functions. The data from which it computes
line segments is in NUMBER(128,3) and it consists of the Freeman codes
generated from the last three rows processed. The first fifteen bits of
NUMBER are used to store the segment number of a particular entry.

LOGIC processes a row in the do loops of line fourteen to twenty-four.

This loop begins by looking to see if the element NUMBER(128,2) is a
possible edge element, and if it finds that the element equals "-1" it

Jooks at a new element since the non-edge elements have been assigned a "-1."
If it is a possible edge element it extracts the segment number and calls
GuarRps to compute the values of p and ¢. What is left to do now are the
actions which correspond to different values of p and @ this is done in

lines 20 through 23,

0001 SUBROUTINE LOGIC (NUMBER,J)

0002 INTEGER*2 NUMBER(128,3)

0003 INTEGER*2 LINES (500,3),COORDI(1500,6)

0004 LOGICAL*1 P ! 1IF P=TRUE THEN ARROW IS A CONTINUATION
0005 LOGICAL*1 Q ! IF Q=TRUE THEN ARROW IS CONTINUED
0006 INTEGER*2 ROW,COL,POINTT,POINTH,POINTL,I

0007 LOGICAL*1 INV,FLAG

0008 INTEGER*2 SIGN,POINSI

0009 COMMON INV,FLAG,SIGN

0010 COMMON LINES,POINTL,POINTH,POINTT,COL,I128

0011 COMMON /DTA/ COORDI

0012 IF(J.EQ.1l) POINTI~1

0013 IF(J.EQ.1l) POINTH=1

0014 DO 10 128=2,127

25

v e emeed e aagn 4 e e n >

0015 IF (NUMBER(I28,2).EQ.-1)GOTO 10

0016 COL=NUMBER(128,2) .AND."177770

0017 CALL GUARDS (NUMBER,P,Q,I28)

0018 ROW=NUMBER (128,2) .AND. 7 !DIRECTION CODE
0019 COL= (NUMBER(I28,2) .AND."177770) /8 !COMPONENT NUMBER
0020 IF (P.AND. .NOT.Q) CALL DUMP(J)

0021 IF((.NOT.P) .AND.Q) CALL BEGIN (ROW,J) .
0022 IF ((.NOT.P) .AND.Q) NUMBER(I28,2)=NUMBER(I28,2).0R.(POINTL*8)
0023 IF ((.NOT.P) .AND. (.NOT.Q)) CALL SINGLE (NUMBER,J,ROW)

0024 10 CONTINUE

0025 RETURN

0026 END

LoGIC computes the values of p and ¢ by using the subroutine GUARDS. GUARDS
looks in a three-by-three neighborhood of sraTes(128,3) and computes the

value of p and ¢ for sTaTeEs(1,2). It checks, as in Figure 14, for the appro-
priate values of p, lines 12 - 57, and then goes on to compute @, line 60 - end.
This processing is done for the entire file with the final results being stored
into COORDI. COORDI(1500,6) is now sorted on the row coordinates of its ele-
ments. The format of the elements, that are stored in coorpz, is also changed
so that the data is now

CODE ,BEGIN(j) ,BEGIN(i) ,DEL

0001 SUBROUTINE GUARDS (STATES,P,Q,I)
0002 INTEGER*2 I,STATES(128,3),SEGMEN,CODE
0003 INTEGER*2 CHOICP,CHOICQ
0004 LOGICAL*l P,Q,L
0005 P=.FALSE.
0006 Q= .FALSE.
0007 L=.FALSE.
0008 CODE= (STATES (I,2) .AND.7)
0009 INDEX=CODE+1
0010 SEGMEN=0
0011 CHOICP=-1
0012 GOTO(10,20,30,40,50,60,70,80) INDEX
0013 10 F((STATES(I-1,2).AND,7).EQ.0)CHOICP=STATES (I-1,2)
0014 0014 IF (CHOICP,EQ.-1) GOTO 85 : '
0015 SEGMEN=CHOICP.AND,"177770
0016 IF (SEGMEN,EQ.0)GOTO 85
0017 P=.TRUE.
0018 STATES (I,2)=SEGMEN.OR.CODE
0019 GOTO 85
0020 20 IF ((STATES (I+1,1) .AND.7) .EQ.1) SEGMEN=STATES (I+1,1) .AND."177770
0021 IF (SEGMEN.EQ.0) GOTO 85
0022 P=.TRUE.
0023 STATES (I,2)=SEGMEN.OR.CODE
0024 GOTO 85
0025 30 IF ((STATESI, 1) .AND."177770.EQ. 2) SEGMEN=STATES (I,1) .AND,"177770
0026 IF (SEGMEN.EQ.0) GOTO 85
0027 P=.TRUE,

26

0 e — —_—--
. L/
A p
2 i ; !
. ' {
AN Ny |
4 - - 4--:-

Figure 14, Examples of geometric relations for various
predicates, the geometric situation when
(a) P = true, and (b) Q = true.

-

T

0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
ooes8
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079

40

50

60

70

80

85

100

200

300

400

500

STATES (I,2)=SEGMEN.OR.CODE

GOTO 85
IF((STATES(I-1,1).AND.7).EQ.3)SETMEN=STATES (I-1,1) .AND."177770
IF (SEGMEN.EQ.0) GOTO 85

P=.TRUE.

STATES (I,2)=SEGMEN.OR.CODE

GOTO 85
IF((STATES(I-1,2) .AND.7) .EQ.4) SEGMEN=STATES (I-1,2) .AND."177770
IF (SEGMEN.E¢.0) GOTO 85

P=.TRUE.

STATES (I,2)=SEGMEN.OR.CODE

GOTO 85

IF ((STATES(I+1,1) .AND.7).EQ.5)SEGMEN=STATES (I+1,1) .AND."177770
IF (SEGMEN.EQ.0) GOTO 85

P=.TRUE.

STATES (I,2)=SEGMEN.OR,CODE

GOTO 85

IF ({STATES(I,1) .AND.7).EQ.6) CHOICP=STATES(I,1)

IF (CHOICP.EQ.-1) GOTC 85

SEGMEN=CHOICP.AND."177770

P=.TRUE.

STATES(I,2)=SEGMEN.OR.CODE

GOTO 85

IF ((STATES (I-1,1).AND,.7).E¢.7) CHOICP=STATES(I-1,1)
IF (CHOICP.EQ.-1) GOTO 85

SEGMEN=CHOICP,AND."177770

1F (SEGMEN.EQ.0) GOTO 85

P=,TRUE.

STATES (I,2)=SEGMEN.OR.CODE

GOTO 85

CHOICP=-1

CHOICQ=-1
GOTO(100,200,300,400,500,600,700,800) INDEX

IF ({STATES (I+1,2) .AND.7) .EQ.0Q)CHOICQ=STATES (I+1,2)
IF (CHOICQ.EQ.-1) GOTO 850

Q=.TRUE.

GOTO 850

IF((STATES(I-1,3).AND.7).EQ.1) CHOICQ=STATES (I-1,3)
IF(CHOICQ.EQ.~1) GOTO 850

Q@=.TRUE.

GOTO 850

IF ((STATES(I,3).AND.7).EQ.2)CHOICQ=STATES(I,3)
IF(CHOICQ.EQ.-1) GOTO 850

Q=.TRUE.

GOTO 850

IF({(STATES(I+1,3) .AND.7).EQ.3)CHOICQ=STATES (I+l,3)
IF (CHOICQ.EQ.~1) GOTO 850

Q=. TRUE.

GOTO 850

IF ((STATES(I+1,2).AND.7).EQ.4) CHOICQ=STATES(I+1,2)
IF (CHOICQ.EQ.~1) GOTO 850

Q=.TRUE.

28

0081 600 IF ((STATES (I-1,3).AND.7).EQ.5) CHOICQ=STATES (I~1,3)

0082 IF (CHOICQ,EQ.-1) GOTO 850
0083 Q=.TRUE.
0084 GOTO 850
0085 700 IF ((STATES(I,3) .AND.7) .EQ.6)CHOICQ=STATES (I, 3)
0086 IF (CHOICQ.EQ.~-1) GOTO 850
0087 Q=.TRUE.
0088 GOTO 850
0089 IF ((STATES (I+1,3) .AND.7).EQ.7) CHOICQ=STATES(I+1,3)
0090 IF (CHOICQ.EQ.-1) GOTO 850
0091 Q=.TRUE.
0092 GOTO 850
0093 850 RETURN
- 0094 END
0001 SUBROUTINE BEGIN (DIRECT,J)
0002 INTEGER*2 LINES (500, 3),COORDI (1500,6)
0003 INTEGER*2 COL,T,J,DIRECT,POINTL,POINTH, POINTT
0004 LOGICAL*1 INV,FLAG
0005 INTEGER*2 SIGN
0006 COMMON INV,FLAG,SIGN
‘ 0007 COMMON LINES,POINTL,POINTH,POINTT,COL,I28
! 0008 COMMON /DTA/COORDI
0009 POINTL=POINTL+1
0010 LINES (POINTL,1)=128
0011 LINES (POINTL,2)=J
0012 LINES (POINTL, 3) =DIRECT
0013 RETURN
2014 END
0001 SUBRCUTINE DUMP (J)
0002 INTEGER*2 LINES (500,3),COORDI (1500,6)
0013 INTEGER*2 1,J,DIRECT,POINTL,POINTH,POINTT
0004 REAL*4 BEGINX,BEGINY,ENDX,ENDY
2005 INTEGER*2 SIGN,COL
0006 LOGICAL*1 INV,FLAG
0007 COMMON INV,FLAG,SIGN
0008 COMMON LINES,POINTL,POINTH,POINTT,COL,128
0009 COMMON /DTA/COORDI
0010 DIRECT=LINES (COL, 3)
0011l BEGINX=30+LINES(COL,1)*7
0012 BEGINY=775-LINES (COL,2)*7
00113 ENDX=30+(128)*7
0014 ENDY=775-(J) *7
0015 GOTO (100,200, 300,400,500,600,700,800) DIRECT+1
0016 100 ENDX=ENDX+7
0017 GOTO 1000
0018 200 BEGINX=BEGINX+7
0019 BEGINY=BEGINY+7
0020 GOTO 1000
0021 300 BEGINY=BEGINY+?
0022 GOTO 1000

D T R 4 e

0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044

0001
0002
0033
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

0515
noleé
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026

400

600

700

800

1000
10

20

110

10

20

BEGINX=BEGINX-7
BEGINY=BEGINY+7

GOTO 1000

BEGINX=BEGINX-7

GOTO 1000

ENDX=ENDX-7

ENDY=ENDY~7

GOTO 1000

ElDY=ENDY-7

GOTO 1000

ENDX=ENDX+7

ENDY=ENLY -7

GOTO 1000

CONT INUE

COCRD1I (POINTH, 1) =~ (BEGINY-775)/7
COCPDI (POTNTH,)= (BEGINX-30) /7
COORDI (POINTH,3)=DIRECT

COORDI (POINTHE,4)=~ (ENDY-775)/7
COCRDI (POTINTH,5)= (ElDX-30)/7
POINTH=PCINTH+1

RET.RN

END

SUBROUT INE CHANGE
INTEGER*2 CUCRULI(1500,6) ! INPUT DATA
INTEGER*2 POINT ! AMOUNT OF DATA
LOGICAL*1 FLAC,Bl0(25)

INTEGER*"2 LINES (500,3),POINTL,FOINTH,POINTT
INTEGER®2 COL,I128,SIGN

LOGICAL®Y INV

COMMON INV,FLAG,SIGN

COMION LINES,POINTL,POINTH,POINTT,COL.128
COMMON /DTA/COGRDI

POINT=v

FLAG=_TRUE.

CALL ERRSET{37,.TRUE., .FALSE.,.FALSE., .FALSE., 31l)
CONTINUE

COORD! FCRMAT=CODE,TAIL(J),TAIL(I),DELTA

DO 90 I=2,POINTH .
GYT0(11,20,20,20,30,40,40,40) COORDI(I,3)+l1
FLAG=COCQ DT1(1,2).GE.COORDI(I,5)
COCRDI(I,v;=IABS (COORDI(I,2)-COORDI(I,S!

IF (.NCT.FLAG)COORDI (1,4)=COORDI(I,1)

IF (.NOT.FLAG)COORDI{I,5)=COORDI(I,2)

OTO 88

FLAG=COORDI(I1,1).GE.COORDI(I,4)
COORDI(I,¢)=IABS (COORDI(I,1)-COORDI(I,4))
IF (FLAG) COORDI(1,4)=COORDI(I,l)

IF(FLAG) COOFDT(1,5)=COORDI(I,2)

SOTC 88

30

!
]

@027
co28
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044

004¢
0046
0047
0048

0001
00C2
0003
0004
0005
0006
oou7
0008
0009
0010
0011
0012
0013
0014
0015
001e
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
N0

30

40

88

90

250
199

e Smamamin TR —

FLAG=COORDI(I,5) .GE.COORDI(I,2)
COORDI(1,6)=IABS (COORDI(I,2)-COORDI(I,5))
IF(.NOT.FLAG) COORDI(I,4)=COORDI(I,1l)

IF (.NOT.FLAG) COORDI(I,5)=COORDI(I,2)
GOTO 88

FLAG=COORDI (I,4) .GE.COORDI (I,1)
COORDI(I,6)=IABS (COORDI(I,1)-COORDI(I,4))
IF (FLAG) COORDI(I,4)=COORDI(I,1)

IF (FLAG) COORDI(I,5)=COORDI(I,2)

GOTC 88

CONTINUE

COORDI(I,1)=COORDI(I,3)
COORDI(I,2)=COORDI(I,4)
COORDI(I,3)=COORDI(I,S)
COORDI(I,4)=COORDI(I,6)

CONTINUE

CALL SORT(POINTH,2)

DO 199 I=3,POINTH-3

WRITE(9,250) COORDI(I,1l),COORDI(I,2),COORDI(I,3),COORDI(I,4)
FORMAT (2X,1I1,X,I3,X,13,X,1I3)

CONTINUE

RETURN

END

SUBROUTINE SORT (POINT,KEY)

INTEGER*2 COORDI(1500,6) ! TRANSMITTED VIA COMMON
INTEGER*2 POINT ! NUMBER OF ELEMENTS TO SORT
INTEGER*2 KEY ! WHICH COLUMN TO SORT ON
INTEGER*2 L,R,K,X(4) ! INTERMEDIATE LOCATIONS
INTEGER*2 LINES (500,3)

INTEGER*2 POINTL,POINTH,POINTT,COL,SIGN
LOGICAL*1 FLAG, INV

COMMON INV,FLAG,SIGN

COMMON LINES,POINTL,POINTH,POINTT,COL,I28
COMMON /DTA/COORDI

L=2

R=POINT

CONTINUE ! RETURN POINT FOR OUTER REPEAT

DO 2 J=R,L,-1

IF (COORDI (J,KEY) .GE.COORDI (J-1,KEY))GOTO 2
X(1)=COORDI (J-1,1)

X(2)=COORDI(J~-1,2)

X(3)=COORDI(J-1,3)

X(4)=COORDI(J-1,4)

COORDI(J-1,1)=COORDI(J,1l)

COORDI (J-1,2)=COORDI (J,2)
COORDI(J-1,3)=COORDI(J,3)

COORDI (J-1,4)=COORDI(J,4)

COORDI(J,1)=X(1)}

COORDI(J,2)=X(2)

COORDI (J,3)=X(3)

COORDI(J,4)=X(4)

K=J

CONT INUE

0031 L=K+1
0032 Do 3 J=L,R
0033 IF (COORDI (J,KEY) .GE.COORDI (J-1,KEY)) GOTO 3
0034 X(1)=COORDI (J-1,1)
0035 X (2)=COORDI (J-1,2)
0036 X (3)=COORDI (J-1,3)
0037 X (4)=COORDI (J-1,4)
0038 COORDI(J-1,1)=COORDI(J,1)
0039 COORDI (J-1,2)=COORDI(J,2)
0040 COORDI (J-1,3)=COORDI (J, 3)
0041 COORDI (J-1,4)=COORDI(J,4)
0042 COORDI (5, 1)=X (1)
0043 COORDI (J,2)=X(2)
0044 COOKRDI{J,3)=X(3)
0045 COORDI (J,4)=X(4)
0046 K=J
0047 3 CONTINUE
0048 R=K-1
0049 IF(L.LE.R) GOTO 1
0050 END
0001 SUBROUTINE SINGLE (STATES,J, ROW)
0002 INTEGER*2 I,J,DIRECT
: 0003 INTEGER*2 LINES(500,3),COORDI{1500,6)
' 0004 LOGICAL*1 R,S,NR,NS,FLAG, INV

0005 INTEGER*2 SIGN,ROW,COL,POINTT,POINTH,POINTL,DIR
0006 INTEGER*2 CODE, SEGMEN,CHOICP,CHOICQ,POINSI
0007 REAL*4 BEGINX,BEGINY,ENDX,ENDY
0008 INTEGER*2 STATES (128,3)
0009 COMMON INV,FLAG,SIGN
0010 COMMON LINES,POINTL,POINTH,POINTT,COL,I28
0011 COMMON /DTA/COORDI
0012 CODE=STATES (128,2) ,AND. 7
0013 DIRECT=CODE
0014 BEGINX=30+ (I28)*7
0015 BEGINY=775~ (J} *7
0016 ENDX=30+ (I38)*7
0017 ENDY=775-(J) *7
0018 GOT0(100,200,300,400,500,600,700,800) DIRECT+1
0019 100 ENDX=ENDX+7

’ 0020 GOTO 1000
0021 200 BEGINX=BEGINX+7
0022 BEGINY=BEGINY+7
0023 GOTO 1000

, 0024 300 BEGINY=BEGINY+7

0025 GOTO 1000
0026 400 BEGINX=BEGINX~7
0027 BEGINY=BEGINY+7
0028 GOTO 1000
0029 500 BEGINX=BEGINX~7
0030 GOTO 1000
0031 600 ENDX=ENDX-7
0032 ENDY=ENDY-7
0033 GOTO 1000

32

0034 700 ENDY=ENDY=-7

0035 GOTO 1000

0036 800 ENDX=ENDX+7

0037 ENDY=ENDY-7

0038 GOTO 1000

0039 1000 CONTINUE

0040 COORDI (POINTH,1l)=~ (BEGINY-775) /7
0041 COORDI (POINTH, 2)= (BEGINX-30)/7
0042 COORDI (POINTH, 3)=DIRECT

0043 COORDI (POINTH, 4)=- (ENDY=-775) /7
0044 COORDI (POINTH,5)= (ENDX=-30) /7
0045 COORDI (POINTH,6)=DIRECT

0046 POINTH=POINTH+1

0047 RETURN

0048 END

The fifth coordinate will be used to place pointers that will give the next
piece of a particular polygonal 1ine, if there is one. At this point the
scene has been reduced to a number of line segments of different length,

each having one of eight possible directions. The next step is to link
these by checking to see if there is a possible continuation of one segement
by some other segment. Such a linking of segments is the function of the
program SEGARR. To begin with, all elements of coorDI(*,5) are set equal

to zero, after which a number of segments is built up in the following steps:

1. Look through coorpi(*,5), and if an entry is found equal to zero
then proceed, or else stop.

2. Start a new segment by recording the location of the zero entry
of COORDI(*,5) in SEGS.

3. Now look for an element in coorp1 that satisfies linking criteria as
given in Figure 16. If such an element is found, two different cases will be
considered. Either it is a single element, or it is a segment (more than one
element). The two alternative courses of action are:

* 'Segment' (a) Link-up data structures, as in Figure 15a, which
results in the graphic operations (Figure 15¢c).

* 'Single’' (b) Link-up data structures, as in Figure 15b, which re-
sults in the graphic operations (Figure 15d).

After these segments have been created the segment list is looked through,
and if there is a consistent join of two segments whose distance apart is
less than three units, then these are joined.

The program SEGARR links together the segments which are stored in the common
area DTA. The number of elements in coorpI is passed via the sixth element
of COORDI (lines 9 - 11). COORDI(*,5) will be used to store the pointers and
they are all initialized to zero in lines 16 - 18. The line with label 85 is
the beginning of the code which constructs the polygons from the long line
segments. First, coorpi(*,s) is searched for a zero, i.e., a segment that

33

pee

--- -1
FINDP H o 4 an XS] (a)
C :
]
QAn 4y
(‘FINDP
-— -
H' Qo 0, \f‘ Qn
Tl
POINTV
NS T
H bo b b
- ! 1 (b)
- =
H' bo b| V‘ bn Qo a, U-. Qn J
Tl

Figure 15. Data structures

, C(d)

(c), (d) geometric structures and geometric operations.

34

(a), (b) and operations with their corresponding

hasn't been used in the construction of a polygon. If it finds a zero, it
Jjumps out of that loop and begins constructing the data structure which
corresponds to a polygon (lines 20 - 23).

The pointer which keeps track of the numbers of polygons poINTS gets up-
dated, and the index of the segment to be processed gets stored both in
SEGS (POINTS,1) and SEGS(POINTS,2); also an "-1" gets stored in COORDI(I,S)
to indicate the end of a polygon (lines 26 - 30). The call to WHERE com-
putes the endpoint of the current segment being analyzed and stores it in
the array SEARCH(3). SEARCH(1) containing the direction of the segment
and SEARCH(2), SEARCH(3) the column and row coordinates (lines 33 - 34).
To determine if there is a segment of Coorbi that continues the segment
at poiNTv a call to rInD is made on line 34. This Subroutine returns an o
/" in FINDP if there is no continuation. It points to the continuation of the
segment being analyzed if one has been found that passes the test in rIND
(Figure 16, Lines 19 - 86). If a continuation has been found and it has
COORDI (FINDP,J) = 0 then it is one of the original long line segments and
it is added to the 1ist being constructed (lines 35 - 40). Alternatively
it may be that there is a continuation of the element being tested but
that this continuation is a segment. In this case the list which is being
tested is added to the continuation 1ist (Lines 42 - 46) with the corres-
ponding 1ist operations as in Figure 15. The resulting contour has many

of the important segments in it but there are many gaps in the contours
(Figure 17) which should be closed. One obvious method of closing these
is to search through all the segments and join those that are less than
a certain distance apart (Lines 52 - 77). This works fairly well, as
Figure 18 shows.
0001 INTEGER*2 SEARCH(3) ! ! CODE,HEAD(J),HEAD(I)
0002 INTEGER*2 COORDI(1500,6) ! CODE,BEGIN(J),BEGIN(I),DEL,POINTER
0003 INTEGER*2 POINTH ! ALIAS FOR POINT
0004 INTEGER*2 SEGS(500,4) ! BEGIN,END
0005 INTEGER*2 POINTV,POINTS,POINT,DI,DJ,FINDP
] 0006 INTEGER*2 MIN ,INDEX,H,T,Y(3)
- 0007 LOGICAL *1 BIO(25),FLAG, INTERN
0008 COMMON /DIS00/ SEGS,POINTS
0009 COMMON /DTA/COORDI
0010 CALL ERRSET(37,.TRUE., .FALSE., .FALSE.,.FALSE.,31)
, 0011 POINT=COORDI (1,6) :
| 0012 ISAVE=1
0013 K1=0
0014 602 CONTINUE
0015 POINTS=0
0016 DO 90 I=2,POINT+3 ! SET ALL POINTERS TO ZERO
0017 COORDI(I,5)=0
0018 90 CONTINUE
0019 85 CONTINUE ! RETURN HERE TO BEGIN A SEGMENT
0020 DO 80 I=ISAVE+l,POINT+l1 ! SEARCH FOR UNUSED ONES
0021 ISAVE=1
0022 IF (COORDI(I,S).EQ.0) GOTO 70
0023 80 CONTINUE
35

TEST! = IN-12 :
TEST2 = UN-J2 -1

- -] ® /
V4
V4
Y 4
ool — o TEST!
AN
AN
4+ o o \
TEST2
- O ‘ ,
7/
(2
) /7
° —-20 TESTHt
+ ° °
TEST2

Fiaure 16, feometric criteria for the continuation of
a polygonal segment,

36

[e e e A e o A i ot e

Figure. 17. Polygon before closing by distance measure.

37

i b : Sebcanaten Sl Gutd. g e

T e v memh et

Figure 18, Polygon after closing by &1-sténce measure.

38

0024
0025
0026
0027
0028
0029
0030
0031
0032
0033

0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075

70

60

50

20

150

110

CONTINUE ! JUMPS OUT OF LOOP HERE

POINTV=1I

IF (POINTV.GT.(POINT)) GOTC 20 ! FINISHED
POINTS=POINTS+1 ! UPDATE SEGMENT POINTER
SEGS (POINTS,1)=I ! MARK BEGINNING OF SEGMENT
SEGS (POINTS,2)=1

COORDI (POINTV,S)=-1

CONTINUE ! RETURN POINT FOR SEGMENT CONSTRUCTION
L=POINTV ! INTERMEDIATE STORAGE LOCATION
CALL WHERE (COORDI(L,1) ,COORDI(L,2),COORDI (L,3),COORDI(L,4),SEARCH)
SEARCH CONTAINS ACTIVE POINT FOR SEARCH

CALL FIND (SEARCH,FINDP,POINTV,NP) ! FINDP POINTS TO NEXT OR 0O
IF(FINDP.EQ.O) GOTO 30 ! CANNOT CONTINUE

IF (COORDI (FINDP,5) .NE.O) GOTO 50

COORDI (POINTV,5)=FINDP

SEGS (POINTS, 2) =FINDP

COORDI(FINDP,S)=-1

POINTV=FINDP

GOTO 60

CONTINUE! MERGE LISTS

COORDI (POINTV,5)=SEGS (NP, 1)

SEGS (NP, 1)=SETS (POINTS,1)

POINTS=POINTS-1

GOTO 85 ! BEGIN A NEW SEGMENT

COORDI (POINTV,S5)=-1

IF (SEGS(POINTS, 1) .EQ.SEGS (POINTS,2)) COORDI (POINTV,5)=0

IF (SEGS (POINTS, 1) .EQ.SEGS (POINTS,2)) POINTS=POINTS-1

GOTO 85

CONTINUE

K1=K1+1

MIN=5000

H=SEGS(K1,2)

IF (H.EQ.-1) GOTO 110

CALL WHERE (COORDI (H,1) ,COORDI(H,2) ,COORDI(H,3) ,COORDI(H,4),Y)
DO 150 J=1,POINTS

T=SEGS(J,1l)

IF(T.EQ.~1) GOTO 150

DJ=IABS (COORDI(T,3)-Y(3))

DI=IABS (COORDI(T,2)-Y¥(2))

IDIS=DJ+DI

IF (IDIS.LT.MIN) INDEX=J

IF (IDIS.LT.MIN) MIN=IDIS

CONTINUE

IF (MIN.GT.3)GOTO 110

ICONST=SEGS (INDEX, 2)

IF (SEGS (INDEX,1) .EQ.COORDI (ICONST,5)) GOTO 110
COORDI (SEGS(K1,2) ,5)=SEGS (INDEX,1)

SEGS (K1, 2)=SEGS (INDEX, 2)

IF(K1.EQ.INDEX) GOTO 110

SEGS (INDEX,1)=-1

SEGS (INDEX, 2) ==~

Kl=Kl~1

CONTINUE

39

1 et e, oo

Ak i e

0076
0077
0078
0079
0080
0081
0082
0083
0084

0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017

21

230

670

222

cccee

s NeNeNeoNeNe!

IF (K1.NE.POINTS)GOTO20
CONTINUE

CALL INITT(160)

CALL DWINDO(-50.,1000.,10.,850.)
CALL CHRSIZ(3)

CALL COMPLE (LX)

CALL DISPLA

CALL CHRSIZ(3)

CALL FINITT(O,780)

TYPE *,'$LX',LX

ACCEPT*, 1J0

IF (1J0,EQ.0) STOP

FORMAT (3X,6 (I5,X))

LTIME=1

CONT INUE

TYPE *,' * 2 !

READ(5,222)1J0

IF (1J0,EQ.0) STOP
IF(LTIME.EQ.1)CALL INTTT(160)
LTIME=TIME+1

CALL DWINDO(-50.,1000.,10.,850.)
CALL CHRSIZ(3)

CALL CHRSIZ(3)

CALL DISPL1(IJO)

CALL CHRSIZ(3)

CALL FINITT(O,780)

IF (IJO.NE.O) GOTO 670

FORMAT (I3)

CALL CHRSIZ(3)

DO 500 I=1,POINTS
IF(SEGS(I,4).LT.20)GOTO 500

IF (SEGS(I,1).EQ.-1)GOTO 500
IHEAD=SEGS (I,1)

L=SEGS(I,2)

CALL WHERE (COORDI(L,1) ,COORDI(L,2),COORDI(L,3),COORDI(L,4),SEARCH)
ICYCLE=TABS (COORDI (IHEAD, 3) -SEARCH(3))

SUBROUTINE FIND (ACTIVE,FINDP,POINTV,NP)
INTEGER*2 ACTIVE(3) ! POINT FROM WHERE SEARCH IS MADE
INTEGER*2 POINT

INTEGER*2 TEST1,TEST2

INTEGER*2 FINDP ! INDEX OF POINT FOUND OR ZERO
INTEGER*2 COORDI(1500,6) ! DATA TO BE SEARCHED
INTEGER*2 SEGS(500,4) ! SEGMEN POINTERS
INTEGER*2 DI,DJ,DEL,POINTV)

INTEGER*2 NP ! INDEX OF SEGS FOR HEAD OF MERGE
INTEGER*2 POINTS

COMMON /DTA/COORDI

COMMON /DIS00/SEGS,POINTS

POINT=COORDI(1,6)

FINDP=0

JDIS=1

JLIM=0

J2=ACTIVE (2)

40

ed® sy

0018

0019

0020

0021

0022

0023

0024

0025

0026
f 0027
j 0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
3 0046
» 0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070

S T T RRETTITELLUTL R RT R TR ST T RE R E T ee

10

20

30

40

50

60

80

90

100

200

300

400

500

I2=ACTIVE(3)

DO 5 I=100,1,-1

IF ((POINTV+L).LT.1) GOTO 4

IF (POINTV+L.GT.POINT)GOTO 4

JN=COORDI (POINTV+L,2)

IN=COORDI (POINTV+L, 3)

TEST1=IN-12

IF (IABS (TEST1) .GT.JD1S)GOTO 4

TEST2=IN-J2

IF (IABS (TEST2) .GT.JDIS) GOTO 4
GoT0(10,20,30,40,50,60,70,80) ACTIVE(l)+l

IF (TEST1,LT.JLIM)GOTO 4

GOTO 90

IF ((TEST1.LT.JLIM) .AND. (TEST2.GT.JLIM)) GOTO 4
GOTO 90

IF (TEST2.GT.JLIM) GOTO 4

GOTO 90

IF ((TEST1.GT.JLIM).AND. (TEST2.GT.JLIM)) GOTO 4
GOTO 90

IF (TEST1.GT.JLIM) GOTO 4

GOTO 90

IF ((TEST1.GT.JLIM) .AND. (TEST2.LT.JLIM)) GOTO 4
GOTO 90

IF (TEST2.LT.JLIM) GOTO 4

GOTO 90

IF ((TEST1.LT.JLIM) .AND. (TEST2.LT.JLIM)) GOTO 4
GOTO 90

CONTINUE

FINDP=POINTV+L

IF (COCRDI (POINTV+L+5) .EQ.0) RETURN ! A SIMPLE CONSTRUCT

DO 1 J=1,POINTS~1 ! IS CANDIDATE THE HEAD OF A LIST

NP=J

IF SEGS(J,l) .EQ.FINDP.AND. (COORDI (SEGS(J,2),5) .EQ.-1)) RETURN ! IT IS T
CONT INUE

FINDP=0

IF ({POINTV-L),LT.1) GOTO 5

IF ((POINTV-L-1.) .GT.POINT) GOTO 5

JN=COORDI (POINTV-L,2)

IN=COORDI (POINTV-L,3)

TEST=IN-12

IF (IABS (TEST1) .GT.JDIS) GOTO 5

TEST2=JIN-J2

IF (IABS (TEST2) .GT. (JDIS)GOTO S
GoOTO(100,200,300,400,500,600,700,800) ACTIVE(L)+l
IF (TEST1.LT.JLIM)GOTO 5

GOTO 900

IF (TEST1.LT.JLIM) .AND. (TEST2.GT.JLIM) GOTO 5

GOTC 900

IF (TEST2.GT.JLIM) GOTO 5

GOTO 900

IF ((TEST1.GT.JLIM) .AND. (TEST2.GT.JLIM)) GOTO 5
GOTO 900

IF (TEST1.GT.JLIM) GOTO 5

4

Y PR TR

j
!
]
/

0071 GOTO 900
0072 600 IF((TEST1.GT.JLIM) .AND. (TEST2.LT.JLIM)) GOTO 5 X
0073 GOTO 900 “
0074 700 IF (TEST2.LT.JLIM) GOTO 5

0075 GOTO 900

0076 800 IF ((TEST1.LT.JLIM) .AND. (TEST2.LT.JLIM)) GOTO 5 :
0077 GOTO 900 4
0078 900 CONTINUE

0079 FINDP=POINTV-L

0080 IF (COORDI (POINTV~L,5) .EQ.0) RETURN ! A SIMPLE CONSTRUCT

0081 DO 2 J=1,POINTS-1

0082 NP=J

0083 IF/SEGS(J,1) .E.FINDP.AND. (COORDI (SEGS (J,2),5) .EQ.-1)) RETURN

0084 2 CONTINUE

0085 FINDP=0

0086 5 CONTINUE

0087 RETURN

0088 END

This process results, in most cases, in a closed curve that can be analyzed
by the Fourier Classification process but there are also cases where the
contours produced are not suitable for processing but must be first modified
by an operator (Figure 4, 5) before they can be used. In this case, the
next step in the processing allows an operator to interactively modify the
contours produced so that they are closed curves and can be analyzed by the
Fourijer descriptor programs. Programs that are used to modify the computer-
generated polygons are documented in Reference 2. Examples of how they work
are in Figures 3, 4, 19 and 20.

FOURIER DESCRIPTOR METHODS

The 1ibrary that is stored in the computer does not use the (x,Y) coordinates
of the polygons, but first-transforms them via the Fast Fourier Transforms
and stores the "Fourier Descriptors." These Fourier Descriptors are defined
as follows: A closed curve can be thought of as a function of a complex var-
iable, z(t), parametrized by arc-length t. We can normalize and have the
curve described by z(t), 0 < t< 2*pi. If we go around the contour more than
once, we get a periodic function, which can be expanded in a convergent Four-
jer series. The Fourier Descriptor of the curve is defined to be the Complex
Fourier series expansion of z(t) which is given by the formula

int

z(t) =] Aln) e where

00

S oM

2 -int

Tz(t) e Ptae

(See Figure 21, 22)

1l
Aln) = ET Of

Thus the Fourier Descriptors (32 of the a(i)) for each element in the 1ibrary
are computed and stored into memory. The contour of the unknown plane is then
found, the Fourier coefficients for this unknown are calculated, and the angu-
lar data necessary is obtained by finding the element i the 1{brary whose
Fourier coefficients are closest to the unknowns.

42

7N
AN

Figure 19. Polygons and corrections entered by the operator,

e
S
O

Figure 20. New polygons obtained from corrected polygons
of Figure 19,

44

PR S B LT R

----------------------- ® o 8 0 0 @

OTBONBUOOMEY NG N NN~ ANE ~ BN

SEE TR TH T N

. . . o

ooooooooooooooooooooo e ® 0o o -

- I
QPn=OMOO~OVTRROOOVALMOLROVLBLBONSY

RS T R R R

nnnnnnnnnnnnnnnnnnn S e 2 o0 8 ° 0 0 5 o v

~O000000PPPOONP0000000COOOIOGOGS

GMOOTOBROVOOVNOVOOM «NNM = OBV RNOS

Rl allanaiinmitil

~0000000000000800000000000000600

%
£ -
—

.

-
@
3

—
~ .
>

-

Q
2

3 e—
—

O~

n
Fal

< -

—

cn O
- —

o ~—

MA

(o] -
“—

[V
L
>

[=
=

[=4

3

>

—
(=]
@
S
<
v
P
[==
i

-
L8

-

L.

L
[\
Q
(¥]
1 .
@

-

|

3

(o]
L

.
-
—
o
~—
<
-
—_
—
~—
<
w
-
1 S
[Y
©
1 N
(o] .
—
QU —
£
— —
<
. o
@ —
v oy
< 4
L
Q .«

Three different contours of an F102 from video taken at WSMR.

Figure 21,

45

1.0000
9.0008
0.0052
0.0008
0.0379
0.0008
0.0023
8.0008

0.0000
.2526
9677

U = PV > VY
ONCWOOIN
oo
= (WO 0o

[y
W
®
0

55ee

O
o
oW

824

»ooo-oo:-’-‘o»mmo-
N
L.

® © © © © © © © & ¢ ¢ & & O o ¢ o o O O O 4 o O s o

OO0 OOOROOOOIIONUVINONNIO NI LD

Flaure 22.

OOOOS
OO

ONNVWE
U ~J-> 30

o®
= L)
WM
-

® & & ¢ &6 o o o

0136
2461
.0785

OQOOOOOOOOOOOOOQOO

46

2832

S
oo
-~J
L0

® & & & & 6 o o o
4312}]
23 RV]
~J-J
500

v
Dl S
vam
S WGr

OPOOOIOONOOOS
ONOWH+O®
DLWOHNW-O
OO PYOS

OO0
=0
whhw

® & & @ S O o o o o o o

O“tb..
®
® (-]
o -3
-3 o

.0624

Three basic qeometrical shanes and thetr
Fourier coefficients.

832

OO
i e e e e o »

®-JIONM SO0

®* O ¢ v
[» e T
W
14V I N
[~17]

SarLWUIIMLV AV
WL
NNOSOSCOU-

SONMWNF-+LNONNWNNINWALALWNONHUNIIVOWNY
*
S
W
e
o

In order to compute the Fourier Transforms, a closed curve description of

the target to be analyzed has been produced by the computer and the operator.
The description of this curve consists of a sequence of x,y coordinates, which
are the vertices of a polygon. As the first step the length of this contour

is computed, and the contour is resampled at a spacing chosen to make the total
number of samples a power of two. This polygon is then filtered to remove
noise, and the Fourier descriptor is computed by taking the Fast Fourier Trans-
form of this sequence of (x,y) coordinates.

If two polygons are congruent in the plane then they can be shown to be so by

a sequence of rotations, translations and contractions followed by a point-to-
point comparison. If we have two congruent triangles represented by a sequence
of x,y coordinates they can be shown to be congruent by first rotating both so
that their longest side lies on the x axis, doing separate contractions so that
they both have the same area then doing a point-by-point comparison starting at
the greatest x coordinate. It is clear that the point-by-point comparison must
be done starting at the same place on both triangles, and continuing at equi-
distantly sampled points in order for this process to be meaningful. The geo-
metric transformations used to show two polygons congruent translate into the
frequency domain as shown in Table I.

TABLE I. EQUIVALENT OPERATIONS

TIME DOMAIN FREQUENCY DOMAIN
Translation Addition to a(0)
Rotation Multiplication of series by a constant
Comparison point Multiplication of a(j) by
change exp(ijt)

In order for a comparison to be meaningful in the frequency domain, a "normali-
2ation" in the frequency domain must be done similar to the geometric normali-

zation that has been done for the triangles. This normalizationl must be done,
using only the operations which are listed on the right of Table I.

First, a(o) is set equal to zero to normalize position. Size normalization is
accomplished by dividing each coefficient by the absolute value of a(1). To
normalize the point where the comparison is to begin, we require that the phase
of the two coefficients of largest magnitude be zero. For a simple closed
curve that does not cut itself a(1) is the coefficient of largest magnituce.
Some polygons and their normalized Fourier coefficients appear in Figure 22.

Let a(L) and a(k) be two non-zero coefficients of the Fourier series. The
normalization multiplicity of the coefficients a(rL) and a(x> is defined to be
M=abs (K-L). Some of the geometric significance of M in the case where a(1) and
a(L) are the only non-zero coefficients is given by the following proposition:

Let z(t) = A(l)*exp(it) + A(L)%exp (iLt) With abs(A(1l)) > abs(a(L)) > 0

1. T. P. Wallace and 0. R. Mitchell, "Local and Global Shape Descrip-
tion of Two and Three Dimensional Objects," School of Electrical Engineering,
Purdue University, September 1979,

PROPOSITION 1. If abs(a(l)) > abs(L*a(L)) then the closed curve described
by z(t) has no intersections.

PROPOSITION 2. If abs(A(l)) = abs(L*a(L)) then the closed curve described
by z(t) has M = abs(1l - L) cusp points. The angles at these points are
convex if L < 0 and concave if L > 0 (see Figure 23).

PROPOSITION 3. The function abs(z(t)) has M maximum points and M minimum
points.

Let z(t) = i A(j)exp(ijt)

j=_oo

PROPOSITION 4. The requirement that a(r) and a(k) have zero-phase angle
can be satisfied by M different orientation/starting point combinations.

®_ = |a(@)| if the associated curve has no

PROPOSITION 5. ™3 |A<j>|§.

intersect'ions.2

Thus for a figure whose second greatest coefficient is a(L), there are

M = abs(L - 1) possible ways to normalize this figure. In order for an
accurate comparison to be possible the normalization chosen for like figures
must be the same. We use the following method to choose the normalization:

1. Calculate the Fourier coefficients for the M possible normalizations.
2. For each of the M normalizations calculate

) re(ai) |ai]

3. Use the normalization which maximizes the above quantity.

The pattern recognition method begins by constructing a three-dimensional
representation of the target to be analyzed. A library of polygons is then
constructed which are the projections of the three-dimensional object, as
seen from different views. From this library of polygons a library of
Fourier Descriptors is computed using normalization described above, and
stored into the computer. When an unknown is to be analyzed ‘and its contour
is found, the Normalized Fourier Descriptors are calculated and these num-
bers are compared to the library entries via the difference,

L la, - LIBj(i)l

2. K. Phillips and R. Machuca, "The Geometry of Closed Curves Parame-
tized by Fourier Series," Research Memorandum, White Sands Missile Range,
Instrumentation Directorate, Advanced Technology Office.

———

S, T e T T e T T s

(c) (d)

Figure 23. Contours %enerated by functions of the
type Z (t) = exp(it) + 1/L exp(iLt) for
(a) L=15 (b)L=3 (c)L=-3 (d) L = -15

49
L T a— » .) .

Yy " Raliiacis o e —— — T N Sy TR o *1

on - —— ot e i e Al o e it =

- i - B]

Once the closest element of the library is found, an 1nterpolat1on3 is done
to get an accurate measure of the aspect angles. When this is done the pro-
cessing of the frame is finished.

We have described an interactive system that could be used to obtain aspect
angle information from one frame of video. Before this system can be made
completely automatic there must be research done with regards to two diffi-
cult problems. One 1is the automatic choosing of a threshold which would
separate possible target points from the background. An approach being con- 4
sidered is an adaptive procedure for choosing p where p would be incremented y
if the size of the ellipse defined by the coefficients a(1) and a(-1) increased; j
and P would be decreased if the area of this ellipse decreased. The other is
the extraction of the target from the polygonal representation of the scene.
Both are difficult problems which will require much research before a satis-
factory solution can be found.

3, T. P. Wallace and O. R. Mitchel, ibid.

50

Appendix A

FINDING EDGES IN NOISY SCENES

Research into methods of identifying edges in a noisy scene has been an
active field of investigation for many years. Treaﬁmgng of the subject may
be found in many books written over the nast decade™’”’'" and many different
approaches are proposed. Recently a survey and comparative analysis of the
methods was made.’

The body of this appendix is segmented into four parts. In the first, we
derive and define a "Moment Operator" which we show to work well for step
and ramp edges. Then, we define and characterize second order edges using
the concept of the rotation of a point in a vector field and develop the
detector analytically. In Section 3 we develop the algorithms for imple-
menting the previously defined operators. Finally, in Section 4, these
algorithms are evaluated using ROC curves and compared with previously
known techniques.

The detection of edges to isolate objects in a scene is motivated by many
distinct problems. One such problem arises in a tracking system where

the input video image: is analyzed and the object to be tracked identified.
Subsequent input and feedback to the drive controls causes the sensor to
re-orient to a new position in an attempt to maintain the same x-y coordi-
nate position for the object in the field of view. While this problem
motivated the research that led to this paper, the results herein discussed
are much broader in scope and application. The constraints imposed by this
problem led to a method that is useful in high data throughout systems.

Section 1. Edges from Moments

First order edge detection methods work in the following way: A picture
function f(x,yg is transformed to another picture function F(x,y) = Tf(x,y)
in such a way that the edges of objects in the scene will be in the set

{ (x,y):F(X,y) > W} for some W. The usual method is to transform the picture
using T equal To the gradient operator. Different edge detection methods
correspond to different numerical approximations to the gradient.

4. A. Rosenfeld and A. Kak, "Digital Picture Processing," Academic
Press, New York, New York, 1976

5. B. Lipkin and A. Rosenfeld, "Picture Processing and Psychopictorics",
Academic Press, New York, New YOrk, 1970

6. W. Pratt, "Digital Image Processing," John Wiley and Sons, New York,
New York, 1978

7. I. Abdou, "Quantitative Methods of Edge Detection," Image Processing
Institute, University of Southern California, Los Angeles, California, 1978

A=1

FECIPUPIORP N

The method used in our edge detection program is not based on derivatives,
To reduce the effect of noise, this edge detection method uses integrals.

The reasoning for the use of moments to find edges is as follows:

* A digitized picture can be thought as a lamina whose density at
each point is f(x,y), so points of high intensity correspond to points of
high density.

* A point (a,b)'on an edge in the original function (see Figure A-1)
would correspond to a point in this lamina (digitized picture) with high
densities on one side and lower densities on the other side.

Thus if we look at a small lamina centered at point (a,b) and compute the
center of mass of this small lamina, we can expect the center of mass to
lie within an area of high densities.

. c‘ ‘ i' " llti‘
(a,3) \ i (2,4 3 ;;'_35/;/;)
I I “ [IFRY '
Alegh! ‘;gf i
_;Lf!‘/ R
(M (2}

= regions of high density

Figure A-1. Example center of mass vectors for (1) and edge
and (2) a region of uniform intensity.

Suppose we now look at a point (c,d) such that the densities around it are
fairly constant. Then the center of mass of a small lamina about it would
be close to (c,d). In this case, a vector from (c,d) to the center of mass
would be very small compared to a vector from (a,b) to the center of mass
in the previous case.

We conclude that one way to transform f(x,y) to F(x,y) such that edges of
the original picture 1ie in the set F(x,y) > W is to replace every f(x,y)

by the length of the vector from (x,y) to the center of mass of a small
lamina centered about (x,y). That is, F(x,y) is the magnitude of the vector
from (x,y) to the center of gravity of a square lamina centered at (x,y)
whose density is given by the picture function f(x,y).

Figure A-2(b) is an example of how this method works on a scene (Figure A-2(a))
typical of those we study at WSMR,

e et
{a) IMAGE OF ROCKET AND PLUME. THE (b) RAMP AND STEP EDGES FOUND BY
PLUME 1S THE LARGE REGION OF USING THE MOMENT OPERATOR. :
HIGHEST INTENSITY. :
, i
‘et Wy, e t !
Y o - .
’ te - b
L. lind g Y
gﬂé F ™
M) ' o} . .
1,
:-g. 2 13
oot®
gt U T T
3 ﬂ by -
it g~ . eerd ')
s s T s
ey T e e
e
- 3
s porl
E “wad -
(c) THE VECTOR FIELD GENERATED BY (d) SECOND ORDER EDGES DETECTED
THE MOMENT OPERATOR. BY USING THE VECTOR FIELD.

Figure A-2. Rocket and results of processing,

Once the coordinates (X,Y) of the center of mass of a lamina about (x,y)
are calculated, the direction of the edge (if any) can easily be found.
Since (X,Y) points to where the intensity of the picture is the highest,
the direction of the edge is perpendicular to the direction of the vec-
tor from (x,y) to X,Y. If we take (x,y) = (0,0), then the direction of
the edge is @ = Arctan (Y/X) + =/2. R

Thus this model gives for each point in the scene a quantity that meas-
ures the probability that a point is an edge point and a direction which
is the direction of a possible edge through that point. :

The model introduced in Section I will not work for roof edges. This is 1
because at the very peak of the roof, exactly where the edge is situated, j
both X and Y are equal to zero. In order to detect roof edges we need

to take advantage of the direction information, and as Figures 6(a), (b) {
and (c) show we need to detect the shearing cause by the change in direc-

tion of the vector field at the edge points. One way of doing this is by
using a tool from the theory of vector fields, namely the rotation of a
vector field about a point.

If a curve T on the plane (scene) is given in the form

rs x = X(t), y = y(t) a<t<b

then &(t) = {o[x(t), y(t)], w[x(t), y(t)] is defined on the interval [a,b]
(see Figure A-3).

%' s £

o1 T oty

! Figure A-3, A curve T and its corresponding vector field ¢(t)

For each t ega,b] there is determined an angle, the angle in radians between
o(t) and o(a) measured from &(a) to ®t). This angle is a many-valued func-
tion (vanishing for t = a) is designated by 6(t) and called an angular
function of the field ¢ on a curve I'. The rotation of the field & on the
curve I' is defined to be

v(0,1) = 3= [0(b) - o(a)]

e A-4 -

If I is a c¢losed Jordan curve, then the rotation is found by subdividing
I into two curves (not closed), computing the rotation of each, and adding.
In the following, T is taken to be a small circle about a point.

We can write the rotation as

= b= [o(b) - o(a)] = - /AL g,
With o(t) = Arctan Y/X + /2, we make the following observations:
If o(t) = constant, then 9&%&1 =Q0and vy = 0. Soy = 0 when

X = a point on the edge of an object in a scene (see Figure A-4).

Figure A-4, Vector Field at a step or ramp edge point.

Section 2. Second Qrder Edges

After a scene is processed by the moment edge detector, each point is
assigned a direction and a magnitude. In effect this specifies a vector

at each point of the plan in question; i.e., these vectors define a vector
field over the scene. An important tool in the study of vector fields is

the rotation of a vector field.8,2 To define the rotation of a vector field,
suppose a vector of the vector field ¢ at the point (x,y) is given by

o(x,y) = {8(x5y) s W(x,y)}
o(x,y) = X(x,y)
vx,y) = V(x,y)
If © is symmetric about x and I is a small circle about x = edge point

on a roof edge, see Figure 5, then write I' = Iy + Ty (where Iy = one half of
the circle and Ty = the other half) .

8. J. Milnor, "Topology from the differentiable viewpoint," University
Press of Virginia, Charlottesville, Virginia, 1965

9. A. H. Stroud, "Approximate Calculation of Multiple Integrals,"
Prentice Hall, Englewood Hills, New Jersey, 1971

A-5

e s

fd—éaé-tl dt = sdo(t) + sdo(t) = m+ w=2r
r I‘] l"z

Fiqure A-5, Vector field at a roof edge point.

Figure A-6(a) and A-6(t) are examples of how these observations can be used
to detect second order edges.

Section 3. Algorithms for Implementation

a. Calculation of Moment. Since we are interested in real time appli-
cations of these methods we simplify the calculation of X and Y by setting

M= fTh Ifk f{x + t, y +u) dt du =1 }

This can be justified by observing that M/4hk is the average of the inten-
sities over a small neighborhood of (x,y) and so this value can be approxi-
mated by the average value of intensities over the entire picture. This
would then be just a scale factor and so could be left out.

To calculate the integrals involved we use an integral formulal® of order 0(h®). ~ ‘

The formula for integration is {
9

I F(x,y) = ; Wi*Di with Wop 417 25/324.w2k = 10/81

and if we apply this to the integrals for X and Y and factor 'out all scale
factors we get

Y=25* (D1 -D5) +4 * (D8 + D2 - D6 - D4)
X=5*(D7 -D3) +4* (D8 + D6 - D2 - D4)

and use abs (X)2 - abs (Y)2 for the associated magnitude. If we sweep
a three-by-three window across digitized scene D7 can be taken as the upper

——

10, A. H. Stroud, ibid,

*sjutod 96pa pue 3bpe joou jo |euibiag *9-y o

J
+ 2=9pf HOIHM HO4 S1NIOd (e)z OL

3SOHL ONIAJILNIAI A9 HOLVH3IdO LNIWOW SNIAddY 3903 J00H ¥V HLIM
ANNO4 ()2 40 S1NIOd 3943 (°) >m J31VH3N3D Q7314 HOLJ3A (9) WSIA 40 IDVINI TVNIDIHO (®)

4 VA Rt S SRR e a5 1A S
V377797777 Y17723VVVVV72aaavasaadaaaaly: .

AN
2
A
<
3
N
3
B
§

GAAGA YA T YN T T Lk €€ LT A2 D2 VAA AR A AN
P e e e e e E ard a Lat t d e T
FIAS AT TP Y Ll b e b C L L ELTTCTTT ASIAIAA A4
»AQAQAAQNVF“\FKRKAAAAA44A44417kLLPAk&L,
v »444* bbb bbb L CCCITTTTTTT AN K,
77 <»M\\\\\\V\\N\\\\\\\\AAAAA44444444744 VN .
VAa477 vvvvvvbhhhhAAAA44444471744MLL u
1444V NW?V?V¥>V%%\BAAAA44447477177 AK
VAA-7-7 VVVVvthhthAA44A4447777777“ NN
VAAV <VVVV§VrhbhhhAAA44444171777w7 LK«
PLULES LK«<ervvvvbthAA4444417777> AN
»»4» v % vN PR AR S o N NUNENENE N NS NN LN VRN
VASVIYibY VKVV»YFA44444771%777M775<<
>><><<<<<<<<xvv<vvth417ﬂ777w,>>y AAV VY
AAVAVVVVVVVVVVVVVPLLONRNAARAARAAAAARNAYYY
>><><<<<<<<<<<<<<<KK<>>>>>>>>>>>>>>><<< ~
>><><<<<<<<<KKK<<¢ >TAAAAAAAAAAAAAAVVY '
>><><<<<kkku NNNR ST T JAAAAAAAARAAY VY <C
>><>ﬂLL{ LLLLLLLVVQAAA)a;naa;A;A)P<M
NERTRMANNNNNNNNNNNANADS ST TN AAALAAAAA Y ¥
47747r<kk44LAALLkaVVVQAQAAAA;;;>)>1<rw
VAAVRRY NNNANRAIINANB BT I TSI A1/ \—\K,
<77747LLLLLLLLLPVVVVVVQi%QQXAAAAA&A “ m
7777(7ﬂ/LLLLLLLPV&VVVVQQQQ&#QAAAX vﬁ<v\
RV ARC T ASANINAAIAINAS > 2> >T 777 T T IANT Ty b by v
71477<77LLLkPVVVVPVVVVVQQQQQAQAAQ<w1V\v
ﬂﬂ«774447LpkkkaVVVVVVVﬂQQQQQAAxvVvN<v<
CTCERTRRAAAINANDNNS SRS T S ST I Iy bl bbb bl
T TTCRTT NN ANASIIASIIDDFTI>TIPALL L bbb bbb
LT LN E S SIS SNNASS DS P> I LLL bbbk b bbb
LR RLET O N Y SRS ™A FIANL L L bbb bbb b b
ﬂﬂ<717144441<444Ab<<<<<7h§h¥<?h\vvvvvvk
4<1144444444<14AAAAAAABV<thhh¥bvaN
TELEVErRTVONTRCCCVVVVVVV bl L L by bbbV b
TLDTTLLLCCLTY PUCCRNCCCCCCCLL LY bl bbb b el b
RN A AA R S L S

|

left hand corner while D3 is the lower right hand corner. In this case the
direction of a possible edge is equal to

Y=X

Y-X

0 = Arctan (

+ /2

b. Calculation of the Rotation. The vector field of a roof edge will
look 1ike the vector field of Figure A-5. To find roof boundary points, we
therefore have to find points for which, in a neighborhood of such a point,

fcde = 21

The smallest region, in the discrete case over which we can take an integral,
is a two-by-two window; thus our algorithm sweeps a two-by-two window across
a scene and computes the integral S _do for each of these windows. If it
turns out that this integral is equ§1 to 2w, those four points which make up
the window are classified as boundary points. To calculate the integral of
a two-by-two window we use an approximation

L
sdo) 8,0
2=1

computed by a computer program.ll

For the purpose of this experiment the procedure used to generate a file
which is the file of detected second order edges in the following:

1. From the origina] file (scene) two files are generated; one (ACI)
contains SQRT [(X)2 + (V)2]; and the other (ANG) the angle of (9, 0<_©< 255)
a possible edge.

2. From the ANG and ACI files one new file AAA is created. AAA is
created by sweeping a two-by-two window across the ANG file. The rotation
is calculated, and if a point is classified as boundary, then to the corres-
ponding point of AAA (initialized at zero) is added the average of those ele-
ments of ACI that have the same subscripts as those of the two-by-two window
being swept across ANG. .

Examples of how this method works are shown in Figure A-6.

1l. R. Machuca and A, Gilbert, "Finding Edges in Noisy Scenes, IEEE
Transactions on PAMI, unpublished,

Section 4, Evaluation

The methods described above were tested on disks whose edges were step,
ramp and roof edges. The step and ramp edges had edge height equal to 16
while the roof edge was constructed by beginning at the center with gray
value equal to 100 incrementing by one to gray value equal 132 and then
decrementing by one to gray value 100. All files were 128 x 128 x 8.

To test the effectiveness of the different operations considered here we
added Gaussian noise of different standard deviation to achieve a given
signal to noise ratio and then tested the algorithms (Figure 7).

The SNR ratio was measured in db; that is, we used SNR = 10 1og]0(%-—)2

n
where I = standard deviation of the noise. For the ramp and step edges
we used SNR = 4, 5, 6, . . . , 14 while for the roof edge the signal to

noise ratios used were 10, 11, 12, . . . , 20. To measure the effect-
iveness of the different algorithms we graphed PF = the probabi]lBy of
false alarms vs. PD = the probability of detection (Figure A-9).

Figure A-8 contains examples of processed roof edge disks with SNR = 13.
The graphs of PF vs. PD (ROC curves) for the corresponding operators
appears in Figure A-Z.

The results for different operators and step, ramp and roof edges appear
respectively in Figure A-10. These graphs show that the performance of

the moment operator is, in all cases, better than that of the Sobel cpera-

tor. A significant improvement is obtained by first applying the average
and then the moment operator. When the signal-to-noise ratio is high the
median gives better results than the average; but there is a cross-over
point at which the average filter gives better results than the median.

12, 1I. Abdou, "Quantitative Methods of Edge Detection," Image Pro-
cessing Institute, University of Southern California, Los Angeles, Cali-
fornia, 1978.

(a) STEP EDGE (o) RAMP EDGE
ORIGINALS
' {d) MOMENT OPERATOR {e) MOMENT OPERATOR {t) ROTATION OPERATOR

DX
,I'\\.- v o

() PF=1, PD=28

ri-qpn "7, Clear edges and edaes with noise ~-''~',

e SV n T W RS

*S3AUND J0Y DULPUOUSDAL0D YL SBUPu JUOY ‘=Y Tulivld

‘DONIDVHIAV EXE

1S =AQd '85'=Aad Vv H31 4V a3NddV HOLVYH3dO
Ol'=4d ‘CI=HNS '"HO1VH3dO ‘Ot'=4d '€1=dNS 'HO1lVvH3dO 3933 1380S QNV HO1VYH3dO
7380S ONISN ANNOA4 1INIWNOW DNISN ANNO 4 3DQA3 LNIWOW €I=NS 1V
SVYM HOIHM 393d3 4004 (?) SYM 39d3 4008 SIHL (3) 3IDA3 JO0H HO4 IAHND DOH (e)
g e RTINS
nn.uﬂl. 1,.\ull ‘Q o e . c ‘F-— ‘.nfl ‘0 - .. . 1
- ETE e S - TR ¥ o DR : _ :
PRSI 2 . e . . ‘
e L S e MU Yy <R O)ﬁ.c "y :
HIA s.nL-.l. ‘I.l _Js--ﬂ.)ﬁ\ M A.a -”l .Al .. - .‘.--ﬂ - “ . . R . . A\
..w I-I ; uvn.v..-adu.rﬁ. ...ll' e n. ..- ._.<. ‘lk-
!)i... Wu- .&.nl [v 'a ' ”-u L oll .
--. L o W1 o ' o n - - " -.- uo o
R J.’ “llt.-os- oy R o N nl-da‘.ﬂ..\t-.n. ..w..q " : _..:_BM. N
- v_. ’ .1'.. 2 4 - -l.“ * N [] ' .. wonoy
2 937 - We-p g " .V - WEms g : fueom
Yn ST T | tE L) TR T 'L - e} : -

1o

. . B
co 02 o' o6 o8 1o o0 02 04 oa

ve V0
{a) ROC CURVES FOR SOBEL OPERATOR () ROC CURVES FOR RAMP EDGE DISK
ON RAMP EDGE DISK. SNR=4 TO 14. FIRST PROCESSED BY TAKING
AVERAGE (3x3) AND THEN BY
MOMENT OPERATOR. SNR=4 TO 14.
T T T

-

?
] e

. 4 i .
4 1 |
. I oo |
: ' ' 1 i
;4; L e e S T~—t—+—v—~.ﬁ—+—r—rﬁ—,—1 ? {7ﬂ-—v—r~-——r‘«r ——— Tk» v ‘Lw——v - {
(c) ROC CURVES OF FIGURE ti(a) AFTER (d) NORMALIZED ROC CURVES FOR
BEING NORMALIZED. AVERAGE-MOMENT OPERATOR
FIGURE 11(b).

X ..-., KAk
N SRS o
{e} EDGE DETECTED USING SOBEL
OPERATOR ALONE. SNR=6, PF=11, Ax3 AVERAGING AND THEN USING
PD=23 MOMENT OPERATOR. SNR=6, PF=11,
PD=.60.

Tizure A<0.. Comparison of Solel and jitment nenior,

*£11119e39979p JO XOpUuL °SA OL3ed 3sLou 03 [eublS

L vl (4] 1}
z i

sto
9

A

NOILVYLOH-1380S

NOILVYLOY-NVIOIN —

NOILVYLOY-LNIWNOW

00T

‘3903 d31S HO4 ALIMNEGVL1031L3a!

40 X3ANI SA OILYYH ISION OL TYNDIS (9)
0 4

r 1) ot
" i

vl 14}

"0L-y a4nbt4

‘3943 4004 HO A

ALITNEY1D3130 40 X3IANI
) F %°SA OlLVYH ISION OL TYNIIS (2)

‘3003 dINVH HLIM

M¥SIA HO4 ALINIEYL10313Q
3O X3AN!I SA OLLVY ISION OL TYNDIS (®)
9 1 4

ol

0 o b " N o
_r . T\T\\“ﬂn\- \\”
= .u////:: 1380s BT) .
_ q AINIWOW .-
f\\\\LunnU\\M : .nHHHHHAY\\\, —
\\J,/._.zuio_z.zsou_z <t
p - h:u.:O;..u@Euﬁ\ﬁ A g
. L ‘ !
\\\) ...rn e
A T [”
“ T . [
T | P
e 1
= - . t

A-13

REFERENCES

1. T. P. Wallace and 0. R. Mitchell, "Local and Global Shape Descrip-
tion of Two and Three Dimensional Objects," School of Electrical Engineer-
ing, Purdue University, September 1979.

2. K. Phillips and R. Machuca, "The Geometry of Closed Curves Parametized
by Fourier Series," Research Memorandum, White Sands Missile Range, Instru-
mentation Directorate, Advanced Technology Office.

3. A. Rosenfeld and A. Kak, "Digital Picture Processing," Academic Press,
New York, New York, 1976.

4, B. Lipkin and A. Rosenfeld, "Picture Processing and Psychopictorics,"
Academic Press, New York, New York, 1970.

5. W. Pratt, "Digital Image Processing," John Wiley and Sons, New York,
New York, 1978

6. 1I. Abdou, "Quantitative Methods of Edge Detection," Image Processing
Institute, University of Southern California, Los Angeles, California, 1978.

7. J. Milnor, "Topology from the differentiable viewpoint," University
Press of Virginia, Charlottesville, Virginia, 1965.

-———— . o

8. A. H. Stroud, "Approximate Calculation of Multiple Integrals," Prentice
Hall, Englewood Hills, New Jersey, 1971,

9. R. Machuca and A. Gilbert, "Finding Edges in Noisy Scenes, IEEE Trans-
actions on PAMI, unpublished.

10. 1. Abdou, "Quantitative Methods of Edge Detection," Image Processing
Institute, University of Southern California, Los Angeles, California, 1978.

AT PR S ad e 5o b e e s

DISTRIBUTION LIST

Number
of

Organization Copies
STEWS-NR-A]
CCNC-TWS 2
STEWS-NR-D 4
STEWS-PL 1 :
STEWS-PT-AL 3
STEWS-QA 1
STEWS-ID 1
STEWS-1D-D 1
STEWS-I1D-0 1
STEWS-1D-E 1

! STEWS-ID-P 3
STEWS-1D-T]
STEWS-PT-AM 1
Commander
US Army Test and Evaluation Command
ATTN: DRSTE-AD-I
Aberdeen Proving Ground, Maryland 21005 2
Commander

d Army Materiel Development and Readiness Command

’ ATTN: DRCAD-P

: 5001 Eisenhower Avenue
Alexandria, Virginia 22333 1
Director of Research and Development

! Headquarters, US Air Force

: i Washington, DC 20315 1
Director

. US Naval Research Laboratory

Department of the Navy |
ATTN: Code 463 !
Washington, DC 20390 1

DISTRIBUTION LIST (cont) No. of Copies

Commander *
Air Force Cambridge Research Center

L. G. Hanscom Field

ATTN: AFCS i
Bedford, Massachusetts 01731 1

Commander

US Naval Ordnance Test Station

ATTN: Technical Library

China Lake, California 93555 2

Director

National Aeronautics and Space Administration

ATTN: Technical Library

Goddard Space Flight Center

Greenbelt, Maryland 20771 2

AFATL/DLODL
Eglin Air Force Base
Florida 32542 1

Commander
3 Pacific Missile Test Center
[Point Mugu, California 9304]]

Commanding Officer
Naval Air Missile Test Center

Point Mugu, California 93047 2
[| Office of the Chief ' |
‘ Research and Development
+ Department of the Army

Washington, DC 20310 3

Commanding Officer

1 US Army Electronics Command

Meteorological Support Activity

4 ATTN: Technical Library

- Fort Huachuca, Arizona 85613 2

Commanding Officer
US Army Ballistics Research Laboratories
Aberdeen Proving Ground, Maryland 21005 1 *

Commanding Officer

US Army Research Office ¢
P. 0. Box 12211

Research Triangle Park, North Carolina 27709 1

DISTRIBUTION LIST (cont)

Commander
Atlantic Missile Range
Patrick Air Force Base, Florida 32925

Commanding Officer
US Army Aviation Test Activity
Edwards Air Force Base, California 93523

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

US Army Materiel Systems Analysis Agency
ATTN: DRXSY-MP
Aberdeen Proving Ground, Maryland 21005

Director

US Naval Research Laboratory
Department of the Navy

ATTN: Dr. J. R. Slagel
Washington, DC 20378

Chief

Department of the Air Force
Mathematical Analysis Branch
ATTN: Dr, H, L. Oestreicher

No. of Copies

12

Wright Patterson Air Force Base, Ohio 45433 1

Commander, Dept. of the Army

US Army Research Office

ATTN: Dr. Frank Kuhl, Bldg. 95N
P.0. Box 12211

Dover, New Jersey 07801

Commander, US Army Research Office
Department of the Army

ATTN: Dr. W. Sander

P. 0. Box 12211

Research Triangle Park, North Carolina 27709 1

Commander, Dept. of the Army
0ffice of the Assistant Secretary
ATTN: Dr. J. H. Yang

Washington, D.C. 20310

DISTRIBUTION LIST (Cont) No. of copies

Commander, Dept. of the Army
Headquarters, US Army, TECOM
ATTN: Mr. Ben S. Goodwin
Aberdeen Proving Ground, Maryland
21005

Commander

Department of the Army

Office of the Assistant Secretary
ATTN: Dr. E Yore

Washington, D. C. 20310

Commander, Dept. of the Army

U. S. Army Armament Research and Development Command
ATTN: Dr. A. Gyoroc, EC & SCWSL

Dover, New Jersey 07801

